
VOGUES: Validation of Object Guise using Estimated Components

Raymond Muller1, Yanmao Man2, Ming Li2, Ryan Gerdes3, Jonathan Petit4, and Z. Berkay Celik1

1Purdue University, {mullerr, zcelik}@purdue.edu
2University of Arizona, {yman, lim}@arizona.edu

3Virginia Tech, rgerdes@vt.edu
4Qualcomm, petit@qti.qualcomm.com

Abstract
Object Detection (OD) and Object Tracking (OT) are an
important part of autonomous systems (AS), enabling them to
perceive and reason about their surroundings. While both OD
and OT have been successfully attacked, defenses only exist
for OD. In this paper, we introduce VOGUES, which combines
perception algorithms in AS with logical reasoning about
object components to model human perception. VOGUES

leverages pose estimation algorithms to reconstruct the
constituent components of objects within a scene, which
are then mapped via bipartite matching against OD/OT
predictions to detect OT attacks. VOGUES’s component
reconstruction process is designed such that attacks against
OD/OT will not implicitly affect its performance. To prevent
adaptive attackers from simultaneously evading OD/OT and
component reconstruction, VOGUES integrates an LSTM
validator to ensure that the component behavior of objects
remains consistent over time. Evaluations in both the physical
domain and digital domain yield an average attack detection
rate of 96.78% and an FPR of 3.29%. Meanwhile, adaptive
attacks against VOGUES require perturbations 30× stronger
than previously established in OT attack works, significantly
increasing the attack difficulty and reducing their practicality.

1 Introduction

Autonomous systems (AS) with camera-focused perception
pipelines are employed in various domains, including au-
tonomous vehicles [15, 31], automated surveillance [34],
and drones [40]. Central to these pipelines is object detec-
tion (OD), which identifies the class and size of surrounding
objects to give the system an understanding of the environ-
ment. The importance of OD has made it a target of vari-
ous attacks, including object deletion [22], which can hide
safety-critical objects from a system; object misclassifica-
tion [10], which mislabels certain objects in order to influ-
ence autonomous planning; and object creation [37], which
causes the target system to hallucinate objects that do not

exist. To combat these attacks, OD defenses have leveraged
methods such as feature processing [56], which reduces the
available search space needed to conduct an attack, certified
robustness [53], which aims to formally guarantee a certain
degree of resistance against adversaries, and contextual con-
sistency [16], which leverages context information such as
the movement and position of objects to detect attacks.

Despite their efficacy, these defenses have limitations.
Spatial smoothing can be circumvented by attackers aware of
its usage [5], certified robustness faces scalability challenges
due to complex mathematical processes, and contextual
consistency suffers in environments lacking contextual
cues (e.g., for or darkness). To increase the robustness of
perception, object tracking (OT) has been added to modern
AS perception pipelines, working on top of OD to associate
the same objects over time across multiple video frames. OT
enforces spatiotemporal consistency onto the OD results,
ensuring that there are no impossible changes in the velocity
or trajectories of tracked objects. This boosts tracking
accuracy and resilience against OD attacks [24].

Recent work has shown that OT is vulnerable to a variety
of attacks, once again putting the perception pipeline at risk.
The attacks include tracker-hijacking [24, 36], where an
attacker moves the predicted bounding box of a tracked object
to cause physical consequences such as vehicle collisions,
and cooling-shrinking [57], where an attacker disables OT
entirely to hide safety-critical objects.

Because OD and OT have different objectives, OD defenses
do not work against OT attacks. For example, a recent work
that leverages contextual consistency against object misclas-
sification [33] examines object movements in OD to verify
the correctness of perception results. Yet, it does not consider
whether the movement itself is modified by an attacker to be-
have in a consistent manner, e.g., via tracker hijacking. Such
an attack would be outside the scope of OD and its attacks.
Although a single defense against OT attacks has been pro-
posed [23], it is not practical for real-world use. The defense
creates perturbation-canceling noise to counter the effects of
tracker hijacking. Yet, when no attack is conducted, this noise

can unintentionally hijack its own tracking results [36].
In this paper, we introduce VOGUES, the first work to

detect tracker hijacking and cooling-shrinking attacks
against OT. Inspired by neuro-symbolic AI [47] and sensing-
reasoning [58], we combine distinct neural networks to model
human visual reasoning, which verifies that the constituent
components (e.g., the bumpers/roof/wheels of vehicles,
the head/limbs/torso for pedestrians) of a seen object are
detectable alongside the object itself. We first use a Spatial
Transform Network (STN) and Region Proposal Networks
(RPN) to isolate objects within an image frame into tightly
cropped instances. Next, we extend pose estimation models,
used by modern AS such as Waymo [50], to extract key points
we define as important components for objects of a specified
class. Lastly, we process the key points into component sets,
one per object in the image frame, and leverage bipartite
matching to check that these component sets are consistent
with our OD and OT results. If an object’s component set is
separated from its tracker, this indicates an attack.

When extracting component sets, we select algorithms
with significantly different weaknesses than OD and OT al-
gorithms. This minimizes the likelihood of OD/OT attacks
from implicitly affecting our defense. To further guard against
attacks simultaneously targeting both our component extrac-
tion algorithms and OD/OT pipeline, we train an LSTM veri-
fier. The verifier fuses class-based spatiotemporal consistency
checking with our component extraction algorithms to detect
tampering in component extraction.

We evaluate the efficacy of VOGUES for both physical and
digital-domain attacks against object tracking and detection.
We consider non-adaptive attackers, who use the same threat
model as previous work and are unaware of VOGUES, and
adaptive attackers, who are aware of VOGUES and actively
alter their attacks to evade it. For instance, to conduct a suc-
cessful tracker hijacking attack, an attacker would need to
simultaneously hijack the object tracker and spoof the ob-
ject’s component reconstruction results to be spatiotemporally
consistent over time with respect to its class.

VOGUES achieves a detection rate of 99.49% for non-
adaptive attacks in the digital domain and 93.88% for non-
adaptive attacks in the physical domain. In benign settings,
VOGUES has a false positive rate of 1.78% in the AV and 2.98%
in the autonomous surveillance domains. Additionally, for
an adaptive attack to simultaneously compromise perception
and evade VOGUES, the perturbations must be 49.9% stronger
than a non-adaptive attack. Thus, adaptive attacks launched
in the digital domain are unsuccessful against VOGUES when
launched in the physical domain, requiring a more powerful
perturbation method than proposed in prior work [21, 36].

In this paper, we make the following contributions:

• We introduce VOGUES1, the first practical detection
framework for tracker hijacking and cooling-shrinking

1Available at https://github.com/purseclab/VOGUES

(a)Object Deletion
(target hidden)

(b) Object Misclassification
(incorrect class for planning)

(c) Object Creation
(fake object viewed as real)

(d) Tracker Hijacking
(object moved to incorrect location)

(e) Cooling-Shrinking
(tracking yields no results)

stop sign
Speed Limit 120

(a) Object Deletion
(target hidden)

(a)Object Deletion
(target hidden)

(b) Object Misclassification
(incorrect class for planning)

(c) Object Creation
(fake object viewed as real)

(d) Tracker Hijacking
(object moved to incorrect location)

(e) Cooling-Shrinking
(tracking yields no results)

stop sign
Speed Limit 120

(b) Object Misclassification
(incorrect class)

(a)Object Deletion
(target hidden)

(b) Object Misclassification
(incorrect class for planning)

(c) Object Creation
(fake object viewed as real)

(d) Tracker Hijacking
(object moved to incorrect location)

(e) Cooling-Shrinking
(tracking yields no results)

stop sign
Speed Limit 120

(c) Object Creation
(hallucinate an object)

(a)Object Deletion
(target hidden)

(b) Object Misclassification
(incorrect class for planning)

(c) Object Creation
(fake object viewed as real)

(d) Tracker Hijacking
(object moved to incorrect location)

(e) Cooling-Shrinking
(tracking yields no results)

stop sign
Speed Limit 120

(d) Tracker Hijacking
(attacker moves object)

(a)Object Deletion
(target hidden)

(b) Object Misclassification
(incorrect class for planning)

(c) Object Creation
(fake object viewed as real)

(d) Tracker Hijacking
(object moved to incorrect location)

(e) Cooling-Shrinking
(tracking yields no results)

stop sign
Speed Limit 120

(e) Cooling-Shrinking
(tracking results hidden)

Figure 1: Attacks against OD (top) and OT (bottom).

attacks against object tracking. VOGUES includes system-
atic approaches to isolate and extract object components
via a neural network pipeline and check them against
OD/OT results through bipartite matching.

• To improve robustness and increase the difficulty of adap-
tive attacks, we propose a special LSTM verifier to detect
invalid sequences of extracted components over time.

• VOGUES achieves an average detection rate of 99.49%
against attacks in the digital domain and 94.06% against
real-world attacks, with an overall false positive rate of
3.29%. We also demonstrate the difficulty of employing
adaptive attacks against VOGUES in the real world.

2 Background and Related Work

2.1 Object Detection and Tracking

Autonomous systems (AS) used in different domains have
similar perception pipelines. The first component of their
perception pipelines is classifying the surrounding objects
and determining their sizes. This is the task of object
detection (OD). Object detectors in AS are typically built on
Convolutional Neural Networks (CNNs) designed to yield
results in real time. YOLO [44] is a popular architecture
used in many domains, including AS. It has high speed
and maintains competitive performance compared to other
popular architectures such as Faster R-CNN [45].

The next stage in the perception pipeline is object tracking
(OT), which aims to associate the same objects over time
across frames. There are two main methods. First, tracking-
by-detection (e.g., SORT [4]), predicts bounding boxes using
a Kalman Filter and associates objects based on similarity met-
rics (e.g., Intersection over Union). Second, the more recent
Siamese trackers [41] employ Siamese Region Proposal Net-
works (RPNs) within a Joint Detection-Association paradigm.
Siamese trackers classify pixels as “target” or “background”
before locating objects to track via CNN, reducing search
space for high accuracy and real-time performance [61].

https://github.com/purseclab/VOGUES

2.2 Perception Attacks

Perception Attacks against Object Detection. Figure 1
illustrates the attacks against OD and OT. There are three
primary attacks against OD. Object deletion [60] (Figure 1-a)
seeks to suppress one or more object detection results,
causing the target to disappear. In this case, this could cause
a vehicle collision with a pedestrian. Object misclassification
(Figure 1-b) changes the class of one object to another object,
such as a stop sign to a speed limit sign [10]. In this example,
the autonomous vehicle may illegally speed up instead of
coming to a stop, placing itself and others in danger. Lastly,
object creation [37] (Figure 1-c) creates fake objects in the
scene that OD sees as valid. This specific instance may cause
an autonomous vehicle to halt unnecessarily.
Perception Attacks against Object Tracking. In addition to
bringing greater accuracy, OT brings robustness against OD
attacks. Thus, two major attacks have recently been put for-
ward against OT itself. First, tracker hijacking attacks [24,36]
(Figure 1-d) move the bounding box of an object in a con-
trolled direction. For example, against autonomous vehicles,
an attacker can move the bounding box of an object in a
victim vehicle’s path to the side of the road. Thinking that the
path is clear, the victim may continue its course and collide
with the hijacked object. Second, cooling-shrinking [57] (Fig-
ure 1-e) targets OT to completely suppress all tracking results.
For example, an attacker seeking unauthorized entry into a
building with autonomous surveillance may leverage cooling-
shrinking to remove their tracker and enter a restricted
area undetected. Both attacks can be performed by using
perturbations to shift the attention of OT, which causes it to
search for objects in a different area. For tracker hijacking, the
attention is moved to where the attacker desires the tracker to
move [36], while for cooling-shrinking, the attention is set to
no area, causing OT to abort searches for tracked objects [57].

2.3 Existing Countermeasures

2.3.1 OD Defenses

We describe three broad categories of OD defenses, focusing
on why they fail for OT attacks.
Information Reinterpretation. These defenses alter the in-
put data or model to provide additional context that can be
leveraged to diminish the effect of adversarial perturbations.
For example, defensive distillation [43] reconfigures the last
layer of a deep neural network with a transformation comput-
ing the probability of a sample being a member of a given
class, which provides additional robustness against misclassifi-
cation attacks against OD. Meanwhile, feature squeezing [56]
condenses samples with many different features into a sin-
gle sample that is more robust to adversarial perturbations.
However, both can be evaded by an adaptive attacker, e.g., by
leveraging a CW attack [5].

Adversarial Input Detection. Another line of work detects
and counters patch-based perturbations against classification-
based convolutional neural networks (CNNs) [54]. These
defenses also offer mathematical proofs that can guarantee
a discrete level of performance against a given set of attacks.
While effective for that domain, they are limited in scope to
patch attacks and have only been demonstrated in the digital
domain, whereas both OD and OT attacks have been affected
by a wide variety of methods, digitally and in the real world.
Spatiotemporal and Contextual Consistency. Spatiotem-
poral and contextual consistency countermeasures are recent
state-of-the-art OD defenses. Previous approaches leveraged
clues about inter-object relationships [29], learned informa-
tion about the environment [33], and/or extracted additional
contextual information from the environment [16]. They en-
sure that the contextual information of the scene matches prior
knowledge about object behavior (e.g., cars should not fly).

Current defenses, however, have only demonstrated efficacy
against specific OD attack types: object misclassification [33]
and object creation [37]. Because these works focus on attacks
against OD, they do not consider attacks against OT that may
not affect consistency. For example, a tracker hijacking attack
can create an illusory lane-change movement on a vehicle
driving forward. This motion is contextually consistent, but
can cause a trailing autonomous vehicle to accelerate and
hit the affected object [24, 36]. Additionally, these defenses
suffer in situations where there is a lack of context to use
for reasoning, e.g., in rural or low-light areas with very few
objects. OT attacks such as cooling-shrinking [57] can take
advantage of this by suppressing object tracking results and
preventing them from being used in contextual reasoning.

2.3.2 OT Defenses

Unlike OD attacks, OT attacks have different objectives than
what is accounted for by current OD defenses. Current OT
attacks alter the trajectory [24, 36] or suppress the tracking
of objects [57] as opposed to changing an object’s class or
creating a new object. These attacks did not exist before the
introduction of OT, and are understudied.

To our best knowledge, only one defense has been
proposed against these attacks, utilizing noise cancellation to
enhance tracking robustness [23]. However, while effective
theoretically, this defense falls short in practice. Firstly, it
relies on perfect projection of adversarial perturbations onto
each frame, ignoring imperfections in the physical domain
due to environmental conditions. Secondly, it assumes
a constant attack presence, risking unintentional tracker
hijacking when attacks are absent [36].

3 Threat Model

VOGUES is mainly designed to detect both tracker hijacking
and cooling-shrinking attacks. Following the threat model

Components

No
Components

(a)

Components
without

associated object!

Valid Components
 in Region

Projected Pedestrian

(b)

Figure 2: (a) Component consistency under tracker hijacking.
(b) A naive attempt to evade component consistency by pro-
jecting a fake pedestrian into the hijacked tracker’s position.

common to these attacks, we assume physical domain attacks,
where the attacker physically modifies the environment (via a
projector [36]) or objects (via patches [33]) with adversarial
noise. The attacker does not apply a norm-bound to the noise
magnitude; instead, the strength of the perturbations is mini-
mized to reduce the attack cost, which encapsulates three
factors: stealthiness, required luminance to compete with
other light sources, and the financial cost to the attacker (Sec-
tion 7.4). Although we assume physical domain attacks, we
also evaluate VOGUES against even more powerful attackers
with digital domain attacks that remove real-world constraints
(e.g., perturbations can be infinite). This puts a lower bound on
the performance of VOGUES. However, we assume that the at-
tacker is only able to manipulate input to the victim’s sensors,
and does not have access to the victim system’s hardware.

We assess VOGUES against non-adaptive attackers not
aware of VOGUES, and adaptive attackers aware of VOGUES

and attempting to evade it while accomplishing attack
goals. While VOGUES implicitly detects misclassification
and deletion attacks (see Section 4), it cannot detect object
creation attacks. This is because VOGUES is built to model
human perception, and previous work has shown that creation
attacks can look realistic to the human eye [37].

4 Motivation and Challenges

4.1 Rationale

VOGUES detects tracker attacks by enforcing the principle that
every detected/tracked object must have corresponding com-
ponents, obtained via the pose and orientation of the object,
and vice versa. This follows from the principle that objects of
interest generally consist of observable components that are
arranged and move in expected ways. We add a further con-
straint that components must act consistently relative to each
other and the object as a whole over multiple frames. This adds
a layer of difficulty to adaptive attacks, as an attacker must si-
multaneously accomplish their original attack goal while alter-
ing the original object’s components to maintain consistency.

Figure 2-a illustrates how VOGUES works against a tracker
hijacking attack, which can lead to a failure to brake and
a possible collision. Normally, an object’s tracker and its

components correlate with each other, being of similar size
and in similar positions. However, the attack moves the
tracker to a different location. To detect attacks, VOGUES

compares extracted components with OT results to find
inconsistencies. In this example, OT identifies the pedestrian
in the attacker-specified location, but the pedestrian has no
associated components, which is the first inconsistency. Mean-
while, VOGUES extracts components via pose estimation at the
object’s original location, but there is no tracker there, which
is the second inconsistency. VOGUES can leverage the incon-
sistencies inherent in tracker hijacking, cooling-shrinking,
and misclassification/deletion to offer a broad defense.

For this example, an attacker might take a naive adaptive
approach and project a realistic-looking pedestrian into the
hijacked tracker’s position, as shown in Figure 2-b. In this
case, the OT result has a component set, derived from the pro-
jected pedestrian, that it can be matched to. Yet, the hijacked
pedestrian’s original components still exist, and have no as-
sociated OT results. Thus, an inconsistency can still be found,
and an alert can be raised. Adaptive attackers must suppress
or change the original component results (e.g., via adversarial
perturbations) to bypass VOGUES (See Section 7.4).

Inconsistency between objects and components manifests
differently depending on the attack. For tracker hijacking
attacks, the OT result and the original components remain
unmatched, as they are forcefully separated from each other.
For cooling-shrinking and object deletion attacks, stranded
component sets without a parent object are the result, as the
components remain when the objects are deleted. For misclas-
sification attacks, though the component set and bounding box
may occupy the same space, their class will be different, e.g., a
car’s components are seen for an object classified as a person.

4.2 Design Challenges
VOGUES models human perception by combining distinct neu-
ral networks based on human reasoning, which poses several
challenges. These challenges stem from the interactions be-
tween the algorithms used, the difficulty in bridging their
gaps with reasoning, and the ability of an adversary to adapt
to detection methods they know are employed.
(C1) Component Reconstruction Algorithm Selection.
VOGUES is modeled after human perception, where an object’s
constituent components (e.g., the head, torso, and limbs
of a pedestrian) should always be apparent. Additionally,
components should behave consistently relative to each other
and their parent object over a continuous timeframe However,
the selection of the correct algorithms for this is nontrivial.

First, each component reconstruction algorithm should
have orthogonal vulnerabilities compared to the OD/OT
pipeline. Previous work demonstrated that models with
different architectures, but similar vulnerabilities, can be
exploited by transferring perturbations computed on one
model to another [51]. Intuitively, using models based on

Input Frames
t= 1,…,n

time t - 1
…

time t + n

OD and OT

bbox, object classes

Planning
&

Control
Alert

1

2

3

4

6
Physical

Perturbations

Instance
Isolation

Pose
Extraction

Bipartite
Matching

Y

Attack
Detected? 8Attack

Detected

Reconstruction Validation

t = 1

Normal t = n

Actual t = n

Anomaly
Check

7

Component Reconstruction

N

5

Figure 3: Illustration of VOGUES’s stages.

Correct Bounding Box

Extracted Components

Adversarial “Grown” Bounding Box blocks path

OBSTACLE
DETECTED

Figure 4: A tracker hijacking attack grows an object into a vic-
tim’s path, evading an intersection-based consistency check.

different architectures and with different parameters makes
it harder to create transferable/universal perturbations. We
outline in Section 6.3 how using additional models that
extract different features increases robustness, and we
evaluate in Section 7.4.1 that forcing an attacker to exploit
independent vulnerabilities greatly increases the amount of
perturbations compared to dependent vulnerabilities.

Second, the algorithms must work in real-time. Domains
such as AVs and video surveillance are time sensitive,
with heavy consequences for delayed results, including
collisions [36]. Therefore, while algorithms like Mask-
RCNN [17] can classify objects at a pixel level in arbitrary
detail, they are usually large networks that are difficult to
scale. The typical running speed of < 10 fps achieved by
most image segmentation algorithms [6, 17] will significantly
delay results compared to the 10-30 fps accepted baseline [2].

(C2) Consistency between Reconstruction and Perception.
“Consistency” must be carefully defined to account for inher-
ent error in ML predictions. For example, a naive approach
demanding that the reconstructed details perfectly match the
perception output 100% of the time would generate many
false positives. Meanwhile, an overly flexible definition of
consistency impairs the approach to detecting certain attacks.

As a metric, component consistency bridges the gap
between ML algorithms in OD/OT and our component
extraction algorithms. If consistency is defined in a way
that does not reflect equivalent concepts in both perception
and reconstruction, it can be evaded. For example, a naive
reconstruction approach may use a simple intersection check
to ensure the components of an object are within an object’s
bounding box. As illustrated in Figure 4, tracker hijacking

could result in a bounding box on the side of the road to
expand into a victim vehicle’s path. As all the components of
the vehicle on the side of the road are within the adversarial
bounding box, a targeted vehicle may stop unnecessarily to
avoid the incorrectly large adversarial object.
(C3) Accounting for Adaptive Attacks. Given no restrictions
on time, computational power, and perturbations, an adaptive
attacker may succeed in achieving their goal. A trivial exam-
ple is an attacker who causes an input video to darken in order
to obscure all tracks. We note that with realistic constraints
on the resources given above, such an attack is difficult.

Previous work has sought to address adaptive attackers by
making it difficult to achieve the attack goal without a large
number of perturbations [33]. This makes adaptive attacks
highly visible and expensive to deploy using projector-based
attacks (Section 7). However, recent advances in optimizing
adversarial perturbation generation [5] have made effective
countermeasures much more difficult to design.

5 VOGUES

In this section, we introduce how VOGUES defends against
tracker hijacking, cooling-shrinking, object misclassification,
and object deletion. Figure 3 presents the stages of VOGUES,
which works as an addition to the perception pipeline of
an AS. An attacker perturbs the environment, which is
then picked up by the victim’s video feed, to launch the
attack against OT. The video feed is processed by the AS’s
perception pipeline, which outputs the bounding boxes and
classes of every relevant object in the scene (1 - 3).

From here, VOGUES checks for component consistency,
where the components, i.e., the key points forming an object,
are checked for congruity with their parent object. The
extraction of these components is split into three distinct
steps to reduce mutual vulnerabilities with OD/OT attacks,
addressing challenge C1. In the first step, we perform instance
isolation, performing a spatial transformation on the original
input frames to enhance the accuracy of subsequent steps
(4). We next leverage the pose estimation algorithms to
extract key points that form the “components” of each
isolated object instance (5). These components are then
passed into post-processing, which uses non-max suppression

and pose-flow tracking to improve the component extraction
results, before mapping them into component sets, each
representing the components of one whole object, to be
verified by bipartite matching against the supplied OD/OT
results to ensure a 1-1 correspondence (6).

We calculate the matching based on an Intersection over
Union (IoU) metric, ensuring similar dimensions between
components and their objects. More specifically, we define
a bounding box for each component that covers their maxi-
mal bounds on the x-axis and y-axis, and compute their IoU
with every other tracked object in the scene. Based on an
application-specific IoU threshold, above which there is a sig-
nificant similarity between an object and a component set, we
first create a graph encoding potential associations between
the object/set. We then conduct maximum bipartite matching
on this graph to find if every object can be associated with
exactly one component set and vice versa. This tunable spatial
similarity metric for consistency addresses challenge C2.

If no bipartite matching solution is found, we alert the user
and pass it to the AS’s planning and control modules (8). Yet,
if a bipartite matching solution is found, and thus no attack is
detected, we perform a final reconstruction validation check
via a one-class LSTM anomaly detector trained to predict how
the component sets should change over time (7). The LSTM
prediction, which takes the component sets of previous frames
into account, is compared against the component data received
via component reconstruction. If the reconstructed component
data is substantially different from what the LSTM predicts,
VOGUES raises an alert. Thus, an adaptive attacker must simul-
taneously complete their attack goal and hijack the compo-
nents to realistically match that goal, addressing challenge C3.

5.1 Isolating Object Instances

To reduce interference from outside sources (e.g., other nearby
objects of the same class), we first separate individual in-
stances of the desired object class into tightly cropped sam-
ples. There exist a variety of computer vision techniques that
can be used to accomplish this goal. For general object classes,
we extend fully convolutional Region Proposal Networks
(RPN) [28]. This is because RPNs learn transformations to ap-
ply to input video frames in order to isolate and crop specific
object instances. The transformation-based process makes
them suitable for applications where the target object may ap-
pear in a variety of configurations, positions, or rotations [25].

Given an input image, an RPN first uses feature mapping to
generate a heatmap encoding of pixels likely to contain target
object(s). We use this information for region proposal, which
searches regions likely to contain targets in order to define
bounding boxes per object. Lastly, both the heatmap and the
region proposal results are merged via Region-of-Interest
pooling by the RPN classifier, which returns the final
instances of tightly-cropped isolated objects. This process
is fully illustrated in Figure 12a in Appendix A.

On the other hand, for objects typically dispersed among
crowds or at long distances, such as pedestrians, we leverage
Spatial Transformer Networks (STNs), which perform better
than RPNs under crowded/distant conditions [20]. A localiza-
tion network first takes the input image and finds a set of affine
transformation parameters (θ) to isolate the object instances.
These parameters determine how the image should be altered
in order to extract an individual object, e.g., how much scaling
or rotation should be applied. Using θ, the original coordinate
space G is converted into a sampling coordinate space Tθ,
encoding the locations of the transformed image from which
objects can be extracted via the 2D affine transformation:

Tθ(G) =

(
xb

i
yb

i

)
= [θ1 θ2 θ3]

xa
i

ya
i

1


where θ1, θ2, θ3 are vectors in R2, {xb

i ,y
b
i } are the coordinates

prior to the transformation, and {xa
i ,y

a
i } are the coordinates

after the transformation.
Lastly, to extract the cropped instances from the trans-

formed coordinate space, a sampler converts grid segments
within the image and transforms them into usable, tightly
cropped instances. Figure 12b in Appendix A fully illustrates
how we leverage the STNs for object isolation.

5.2 Pose Extraction
Once object instances are isolated, we extract the pose from
the instances to use as components. The pose of objects is
represented in the form of a graph, with nodes encoding the
position and object class of user-defined key points within the
object (e.g., joints for humans and bumpers for vehicles), and
edges encoding the relationships between points (e.g., heads
should be connected to necks).

To extract object poses, object instances are fed into a fully
convolutional network (FCN) to yield a set of 2D key points
describing visible details. For example, a vehicle’s key points
may consist of the left front wheel, the right side of the bumper,
top, and bottom of the license plate, whereas a pedestrian’s
key points may consist of their arms, legs, spine, and head.
Edges are then extrapolated based on class-based rules; for
example, license plates should be connected to bumpers.

Given an image, the network minimizes the loss function:

L =
1
N ∑

i
(pi −gi)

2 + log
(

eyi

∑i eyi

)
where pi is the predicted location of key point i, gi is the
keypoint’s ground-truth location, and yi is the ith position of
the output layer. The pose extractor iteratively reduces the
error in prediction pi over a set number of attempts N.

At runtime, the pose extractor distills the image into feature
sets, which are compared to the features of known, previously
learned key points (e.g., the arm of a human or the license

ba

ca

bb

cb

ba

(IoU) ba bb

ca 89% 0%

cb 0% 3%

ca

bb cb

Component Set BBox Extrapolation

Cannot match
bb and cb,

raise alert!

1 2. Match Graph Construction2

3. Max Bipartite Matching3

Figure 5: Our approach for component consistency checking.

plate of a car). The pose extractor produces a set of most
likely predictions (each containing the proposed pose infor-
mation of the object), along with a confidence score for each
prediction, and returns the highest-scoring prediction as the
final pose. This encodes all visible key points for an object,
but not necessarily all the points: points that are occluded or
otherwise obscured in a way that an object detector cannot
cover (e.g., by deep shadow) are not returned.

5.3 Post-processing
Once poses for objects are extracted, we process the results
to enhance the extraction accuracy and turn the pose informa-
tion into usable component sets. For each object, we run non-
maximum suppression [38] on all of the returned component
sets. Specifically, we order component sets by their confidence
scores, then eliminate any component sets that are within
a class-specific pose similarity distance [11] to a higher-
confidence set. This ensures that closely clustered, similar-
looking component sets will be reduced to the single most
confident set, which helps eliminate any duplicate component
information (e.g., two sets returned for one pedestrian).

For objects extracted via STN, we map the pose in-
formation of each object back to the original coordinate
space via a spatial de-transformer network (SDTN). The
SDTN takes transformation vectors (θ1,θ2) and computes
de-transformation vectors (γ1,γ2,γ3):

[γ1 γ2] = [θ1 θ2]
−1

γ3 =−1∗ [γ1 γ2]θ3

These are used to invert the original transformation:

(
xa

i
ya

i

)
= [γ1 γ2 γ3]

xb
i

yb
i

1


where (xa

i ,y
a
i) are the coordinates post-transformation and

(xb
i ,y

b
i) are the coordinates pre-transformation.

To improve the accuracy of pose-extraction results, once
the estimated poses are mapped back into the original coordi-
nate space, we run pose-flow tracking [55]. Pose-flow tracking
enforces spatio-temporal consistency in pose estimation

between consecutive video frames, improving accuracy with
minimal overhead to the component reconstruction process.

Once post-processing is complete, we aggregate the
pose information of extracted classes and turn them into
component sets to be used for consistency checking. Each
component set represents a single object, and encodes the ob-
ject’s class, the image frame number, the absolute coordinates
of each key point extracted by pose estimation, the class of
each key point (e.g., hand, bumper), and their relationships to
each other. The relationships between key points are created
through class-based rules (e.g., hips should be connected to
legs), and work for both complete key point sets and partially
occluded ones. All final component sets found within a video
frame are passed into the consistency-checking module to
detect tracker hijacking and cooling-shrinking attacks.

5.4 Consistency Checking

We judge component consistency based on the similarity of
dimensions between each component set and their correspond-
ing tracking result. Figure 5 illustrates how our component
consistency checking operates. For comparison against the
original tracker bounding boxes (1 in yellow, solid lines),
we first extrapolate a bounding box from each component set
by computing the maximum extent of the overall component
set on the x- and y-axis (in red dashed lines).

We next create a match graph by examining the IoU
between each tracker bounding box and each component set
(2). This forms the mathematical basis of our component
consistency metric. The IoU computes the dimensional sim-
ilarity between two bounding boxes, encoding the percentage
that two bounding boxes overlap over their combined area.
The less they differ in location, size, and shape, the higher the
IoU. An IoU of 1 indicates that the two bounding boxes are
identical. If the IoU is above a similarity threshold v, we con-
struct an edge in the match graph (represented by bold text)
between the relevant component set and the tracker bounding
box, to represent potential 1-1 correspondence between them.

Lastly, we run maximum bipartite matching on the match
graph to map every tracker bounding box to exactly one com-
ponent set (3). If a matching cannot be found, an incon-
sistency exists. In Figure 5, the bounding box bb has been
hijacked away from its component set cb.

We formalize our consistency checking approach in Al-
gorithm 1. We take, as inputs, the object bounding box sets
b from the OD/OT pipeline, the component sets k from our
reconstruction pipeline, and the acceptable similarity thresh-
old v ∈ [0,1]. The threshold v can be adjusted based on the
inherent error in the constituent algorithms and depending
on the domain (see Section 7.1). For example, if a security
camera guards a large open area leading to a restricted space,
a smaller, less strict v can be used, whereas autonomous ve-
hicles can set v to ≥ 0.5 to accommodate the more time-
sensitive nature of the application.

Algorithm 1 Component-Object Consistency Checker
Input: List of bounding boxes and corresponding classes b= (class :

box), List of component sets and corresponding classes
k= (class : components), acceptable similarity threshold v.

Output: Inconsistency indicator bit (alert).
1: function CHECK_CONSISTENCY(b,k,v)
2: for class c ∈ b do
3: if LENGTH(b[c]) ̸= LENGTH(k[c]) then
4: return alert= 1 ▷ Unmatched components exist
5: end if
6: match_graph= {V= [b[c] ∪ k[c]], E= []}
7: for box ∈ b[c] do
8: for cmpnt ∈ k[c] do
9: cpt_box= MAX_EXTENTS(cmpnt)

10: if box∩cpt_box/(box∪cpt_box)≥ v then
11: match_graph[E].append(box↔ cmpnt)
12: end if
13: end for
14: end for
15: bp_match_graph= ADD_SRC_SINK(match_graph)
16: if FORD_FULKERSON(bp_match_graph) ̸= |k| then
17: return alert= 1 ▷ Unmatched components exist
18: end if
19: end for
20: end function

Our consistency checking algorithm verifies each class
separately in turn (Line 2), preventing objects and component
sets from different classes from being matched together. Next,
it ensures that the number of object bounding boxes and the
number of component sets for a given class are equal (Lines
3-5). Here, inequality means that either one or more object
bounding boxes have no components (indicative hijacking or
misclassification), or one or more components have no parent
object (indicative of cooling-shrinking or object deletion).

Assuming that there are an equal number of object
bounding boxes and component sets, we initialize the
match graph (Line 6) encoding which object may belong to
which component set. We extrapolate each component set’s
2-dimensional bounds (Line 9) to compare its location and
size to OD/OT results. We draw an edge between an object
and a component set if their IoU is greater than or equal to
the acceptable similarity threshold v (Lines 10-12).

After the construction of the match graph, we run maximum
bipartite matching between the components and the object
bounding boxes to ensure that there is a one-to-one mapping.
Specifically, we add a source node to all object bounding
boxes in the match graph and a sink node to all component
sets (Line 15). We then run the Ford-Fulkerson algorithm [12]
to obtain the maximum flow of the match graph (Line 16). A
maximum flow equal to the number of component sets/objects
indicates that a one-to-one mapping exists. If such a mapping
cannot be achieved, it means that at least one bounding box
does not have a corresponding component, and vice-versa;
therefore, we trigger an alert (Line 17).

6 Adaptive Attacks

Our component reconstruction pipeline is built to address pre-
vious OD and OT attacks. However, if an attacker is aware of
VOGUES, they may attempt to adapt their attack to alter both
the perception pipeline and VOGUES’s consistency checking at
the same time, disguising their attack. We detail our formula-
tion on how such an adaptive attack might be launched, and in-
troduce reconstruction validation to counter adaptive attacks.

6.1 Formulation
We create a new adaptive attack that aims to evade VOGUES

while accomplishing the original attack goal. Although certain
naive attacks can also be considered adaptive, e.g., wearing a
camouflaged ghillie suit to hide a pedestrian, these methods
are both conspicuous and capable of fooling human percep-
tion, which we consider outside of our threat model (Sec-
tion 3). Thus, we extend the CW attack [5] to find the optimal
minimized perturbations that avoid VOGUES’s component re-
construction algorithms while still achieving the attack goal.

We minimize the perturbation amount with respect to the
ℓ2 distance, which takes the root-mean-square of the amount
of perturbations applied to the image. We choose the ℓ2 norm
over ℓ∞ because numerous small modifications to the image
will generally lead to a smaller maximum perturbation, as op-
posed to a small number of large changes. A higher maximum
perturbation increases the attack’s visibility, required lumi-
nance, and cost to project (Section 7.4), thus previous work
considers ℓ2 the strongest metric to minimize adaptive attack
perturbations [5,49]. Formally, we minimize the ℓ2 norm ∥δ∥2
for an image x to generate perturbation δ as follows:

minimize ∥δ∥2 + c · f (x+δ)

subject to x+δ ∈ [0,1]n,

where c is a tunable scaling constant that balances the impor-
tance between the two objectives [5], and f (x+δ) represents
the attack success loss. Specifically,

f (x) = g(x)+∑
i

∣∣p′i(x)− pi(x)
∣∣ , (1)

where p(x) is the matrix of the predicted pose for x, and
p′(x) is a target pose for an object, which defines the targeted
absolute coordinates that the targeted object’s pose should be
mapped. p′(x) can be manually specified (e.g., an empty set
meaning no pose for cooling-shrinking), or be derived from
the original pose information (e.g., the same pose shifted 200
pixels left for tracker-hijacking), depending on the attack goal.

We use derived target poses for adaptive tracker hijacking,
whereas we manually specify target poses based on the empty
set for tracker deletion and cooling shrinking. We manually
specify target poses for object misclassification attacks based
on sample poses extracted from benign footage. Further, in

Original Object
(no components)

Hijacked Tracker

Invalid
hijacked

pose

Figure 6: An adaptive attack hijacking the pedestrian’s pose
and the tracker. The component set dimensions (yellow, dotted
line) are consistent with the hijacked tracker, but the pose is
in an invalid shape and detected by reconstruction validation.

Equation 1, g(x) represents the original objective function
of the non-adaptive attack with constraints. For example, for
tracker hijacking [36], g(x) is given as:

N

∑
n=1

(Lc(In, pc,θ)−Lc(In, p∗c ,θ))

+λ(Lr(In, pr,θ)−Lr(In, p∗r ,θ))

where In is the proposal for input frame I at proposal n, λ is
a fixed weight used to smooth ℓ1 loss for regression, θ is the
region proposal network’s parameters, and N is the number
of frames. Additionally, Lc and Lr are the OT classification
and regression loss functions, and pc/p∗c and pr/p∗r encode the
labels/pseudolabels for OT classification and regression.

We ensure with Equation 1 that both the original objective
function g(x) is achieved and that the achieved pose is as
similar to the target pose as possible (and thus the difference
between the two is 0). Using the CW objective function with
the ℓ2 optimization, the attacker finds the minimally visible
amount of perturbations to accomplish the attack goal and
evade VOGUES’s detection. An adaptive attacker will continue
to optimize their perturbations until a working solution is
found. A solution is always possible given an infinite pertur-
bation budget. However, finding the solution is not trivial,
as the attack must simultaneously minimize Equation 1 and
achieve the target pose. We quantify the difficulty of doing so
theoretically in Section 6.3, and experimentally in Section 7.4.

6.2 Reconstruction Validation

Pose Hijacking. Previous work studied pose hijacking, which
use adversarial perturbations to transform the correct pose into
a target-specified pose anywhere in the image [21]. Our adap-
tive attack conducts pose hijacking to alter the victim’s pose to
match the attacked OD/OT data. Yet, it is difficult to hijack the
entire pose of an object, as certain key points (e.g., the head
and neck in humans) are more robust against attack than oth-
ers [21]. Thus, hijacked poses tend to be unnatural and unreal-
istic, requiring extra perturbations to correct. We discuss the
the behavior of poses under hijacking further in Appendix B.

Rθ

v0 Rθ

v1

Rθ

vn-1…

component set
t=1

component set
t=2

component set
t=n

vn

Fully Connected Layer

Valid Class: 80%
= Valid

Figure 7: VOGUES’s reconstruction validation remembers fea-
tures (v) between frames, which are continually updated by
the current component set via recurrent feedback loop (Rθ).

Validating Components. Leveraging the unusual appearance
of hijacked poses, we develop a reconstruction validation
pipeline against adaptive attacks. While an adaptive attacker
may evade consistency checking, extracted components will
likely have an unusual shape unless the attacker uses a much
larger amount of noise (see Section 7.4.1), as illustrated
in Figure 6. The hijacked pose (bounded by yellow, dotted
lines) is consistent with the hijacked tracker bounding box.
Thus, component reconstruction will not detect an attack.
Yet, the pose indicates a flailing posture that should be
impossible from a running start. We thus perform validation
through anomaly detection against our component sets to
detect adaptive attacks. With validation in place, an adaptive
attacker’s goal requires even less difference between the
target and predicted poses; greater deviations can be picked
up as invalid. We quantify how difficult this stricter goal is
to achieve in the real world in Section 7.4.

We conduct reconstruction validation via a one-class
LSTM network, similar to those used in anomalous network
traffic detection [30]. The LSTM architecture is selected to
learn order dependence in predicting the sequence of compo-
nents [14]. For our system, we pass in a sequence of compo-
nents across object classes, collected over the course of several
video frames to allow for a complete analysis of the poses over
time. Figure 7 illustrates the pipeline for reconstruction vali-
dation. Intuitively, the LSTM works by “remembering” the
sequence of component sets of previous frames as it updates
with the information from the current frame. Formally, it takes
a sequence of features v for each frame over time, updating
with current information via recurrent feedback loop:

vi = Rθ(fi,vi−1),

where vi is the hidden feature vector calculated from previous
feature vectors vi−1, fi is the raw feature vector at time i, and
θ is a learned parameter identical for all recurrent operations.

Once all features are extracted at time n-1, the LSTM
outputs the prediction of what the next component set
should look like, taking into account the history of previous
component sets. For example, if a pedestrian has been
running beside an oncoming vehicle, the pedestrian will
likely continue running in the next frame and not be suddenly
at rest on the other side of the image.

This prediction is compared to the actual component
information at time n, and passed into a fully connected

layer to return a validity score ∈ [0,1], which encodes the
likelihood that the component set at time n is compatible
with the predictions of previous frames. This score is checked
against a tuned hyperparameter threshold d, which is set
based on our experiments (see Section 7.1). If a validity score
of less than d is returned, the autonomous system is alerted
to potential tampering with the component reconstruction
pipeline. However, declaring components as valid does not
preclude an alert from being thrown: the alert generated by
consistency checking (Section 5.4) always takes precedence
over the validation results.

6.3 Adaptive Attack Analysis

We provide a theoretical justification of the higher robustness
of VOGUES against adaptive attacks due to the combination
of multiple diverse models (ODT, pose estimation, and
reconstruction validation). Previous work has shown that pose
estimation models extract different, more detailed features
from objects than ODT models [8]. With different extracted
features, different errors occur when ODT models and pose
estimation models are attacked (Section 7.3). The defensive
value of utilizing additional models that have different errors
has been examined by KEMLP [16], which utilizes additional
task-specific models to integrate domain knowledge into OD
to make it more robust. Although VOGUES works differently
to KEMLP, providing independent results to be checked
against ODT instead of feeding domain knowledge results
directly into OD, our pose extraction system is a permissive
type model [16] (i.e., if a pose is extracted for an object, a
bounding box should be extracted as well), and our compo-
nent consistency LSTM is a preventative type model [16]
(i.e., given a set of poses relating to an object over time,
these poses must move in a consistent manner). Thus, we can
use KEMLP’s Theorem 2 to describe the conditions where
VOGUES will be more robust than ODT alone. We leverage the
definition of a truth rate [16], which defines the rate at which
a model gives results that are consistent with ground truth.
Specifically, given an input distribution D containing both
benign samples Db and attacked samples Da, the weighted
accuracy of ODT can be described as a truth rate:

α∗ := ∑
D∈{Db,Da}

πDα∗,D

where πD is the probability distribution function for if a sam-
ple is in Db or Da, αm,I is the truth rate at which a model m
gives results that match ground truth for input samples I, and
∗ represents the ODT models.

Given this, the combined truth rate of the component recon-
struction models K and the ODT models can be described.
Let K ,K ′ ∈ {I,J}, where I is the set of permissive models
and J is the set of preventative models, and K ̸= K ′. Then:

γD :=
1

n+1
min

K

{
α∗,D − 1

2
+ ∑

k∈K
αk,D − ∑

k′∈K ′
εk′,D

}
(2)

where n is the number of models represented by K and εm,D
is the false rate at which a model m gives results that do not
match the ground truth. Intuitively, Equation 2 explains the
accuracy of VOGUES, based on both ODT’s accuracy and the
accuracy/error rate of VOGUES.

According to Theorem 2 of KEMLP, by Cher-
noff bound on the true and false rates, as long as

γD >
√

4
n+1 log 1

1−α∗
∀D ∈ {Db,Da}, our defense can

detect attacks against ODT. As a corollary, an adaptive
attacker must increase their perturbations in order to lower
γd to evade VOGUES and ODT. VOGUES achieves sufficient
γD to detect attacks (Section 7.3), and we further support
the theorem in Sections 7.4.1 to 7.4.3 with empirical data
illustrating how real-world constraints significantly reduce
an attacker’s ability to find a solution that evades VOGUES.

7 Evaluation

Using both digital and real-world attacks, we evaluate VOGUES

against non-adaptive attackers (Section 7.3) and adaptive
attackers (Section 7.4) for autonomous driving and video
surveillance applications. To evaluate successful detections
by VOGUES, we consider only the scenarios where the given
attack is already successful. Therefore, a “successful detec-
tion” is determined by whether VOGUES generates an alert
for the successful attack. We also evaluate the false positive
rate of VOGUES by measuring the number of alerts in benign
scenarios, where no attacks are conducted (Section 7.5).

We evaluated our system on a laptop with a 9th Generation
Intel i5-9300H processor, an NVIDIA GTX 1650 GPU,
and 8 GB RAM running Python 3.8.10. With this setup,
we achieved an average of 23 fps runtime, with 0.03s for
instance isolation, 0.04s for component extraction, 0.0005s
for matching, and 0.0007s for reconstruction validation.

VOGUES is able to detect 99.49% of digital attacks and
94.06% of physical attacks, with false positive rates of 1.78%
in autonomous driving and 2.98% in video surveillance. Adap-
tive attacks require 49.9% stronger perturbations than non-
adaptive attacks, significantly increasing the attack difficulty
and making them impractical in the real world.

7.1 Implementation
We employ YOLOv3 [44] as our object detection platform
and DaSiamRPN [61] as our object tracking platform, both
of which have been used in recent previous work in object
detection and tracking attacks [33, 36].
Component Reconstruction. We implemented all ML
models in PyTorch 1.9.0cu102. For pedestrian component

reconstruction, we run a stacked hourglass network [11, 39]
based on single-person pose estimation that extracts the
pose information of each individual separately. For vehicle
component reconstruction, we implement a real-time
keypoint extraction model for vehicles, similar to approaches
used for vehicle pose estimation and six-degrees-of-freedom
3D reconstruction of tracked objects [25, 26, 32, 46]. It is
trained on the KITTI dataset [13] to extract up to 20 2D
vehicle key points as pose information. We set our acceptable
similarity threshold (v) to 0.5 for consistency checking.
Reconstruction Validation. To train the reconstruction val-
idation LSTM model, we collected the output of our com-
ponent reconstruction pipeline across 13000 videos in the
UFC101 dataset [48] and 606 videos in the BDD100K
dataset [59]. For each video, a sequence of components in
each frame was encoded. We then trained the LSTM network
to classify these sequences as valid component sequences.
A randomly chosen 80% of the original data was used to
train the LSTM, while the other 20% was used to validate the
LSTM at each performance step. We set our hyperparameter
validity score threshold (d) to 0.5, based on tuning via grid
search in initial experiments.
Adaptive Attacks. For maximum compatibility with our ex-
isting model implementations, we adapted a PyTorch version
of the original Carlini-Wagner attack [27] for adaptive exper-
iments. Our modified version accepts target poses as inputs
as opposed to classes and modified the constraints to account
for both the original attack goal and evading VOGUES.

7.2 Evaluation Setup

7.2.1 Attacks

We evaluate VOGUES against previous attacks on the OD/OT
pipeline. For digital attacks, we evaluate it against (a) tracker
hijacking [36], (b) cooling-shrinking [57], (c) object misclassi-
fication [7], and (d) object deletion [19]. For physical attacks,
we evaluate it against (a) tracker hijacking [36] and (b) object
misclassification [7]. This is because, to our knowledge, they
are the only two attacks against camera-based systems reliably
demonstrated in the physical domain. We also modify these at-
tacks with the formulation in Section 6.1 for adaptive attacks.

In these attacks, we focus on vehicle and pedestrian classes
as they are the most safety-critical, causing physical injury and
masked entry into restricted areas. Extending VOGUES for new
object classes is straightforward, as discussed in Section 8.

7.2.2 Digital Datasets

We use two datasets to simulate physical attacks against our
system in the digital domain: 197 videos from BDD100K [59]
for autonomous vehicles and a curated subset of 19,562
images from MPII [1] for pedestrian video surveillance. We
selected videos and images based on compatibility with the

Table 1: VOGUES detection rate against non-adaptive attacks.

Attack Goal
Digital Attacks Digital Attacks Real-world Attacks Real-world Attacks

Pedestrian‡ Vehicle‡ Pedestrian Vehicle

Tracker Hijacking 99.49% 100% 100% 90.9%
Cooling-Shrinking 99.49% 100% N/A† N/A†

Misclassification 99.49% 100% 100% 91.67%
Object Deletion 99.49% 100% N/A† N/A†

† Tracker-hijacking and misclassification attacks are conducted for real-world experiments as
cooling-shrinking and object deletion have not been reliably demonstrated in the physical domain.
‡ Non-adaptive attacks do not affect component reconstruction, leading to identical detection
performance regardless of digital attack method.

attacks evaluated, removing those with strong noise that
prevents OD/OT from working. Together, these datasets cover
a rich diversity in lighting conditions, driving environments,
and human behaviors encountered in the real world. We
conducted all four attacks, and their adaptive versions, against
each video/image for a total of 19,759 samples per attack.

We implemented tracker hijacking attacks by moving track-
ers 200 pixels in the opposite direction of the victim object,
e.g., moving the tracker of a left-of-center object to the right.
For cooling-shrinking attacks, we removed all trackers from
the image or video sample. For object misclassification at-
tacks, we changed pedestrians to vehicles and vice versa. For
object deletion attacks, we deleted the pedestrian or vehicle
with the highest confidence from the OD output.

7.2.3 Real-world Physical Experiments

We conducted physical domain non-adaptive and adaptive
attacks against moving vehicles and pedestrians using the
same methods as previous work [18, 36]. For non-adaptive
attacks, we collected 49 videos for successful tracker
hijacking (33 for AVs and 16 for pedestrians) and 52 videos
for successful misclassification attacks (36 for AVs and 16
for pedestrians). For adaptive attacks, we collected 43 videos
each for tracker hijacking and object misclassification (33 for
AVs and 10 for pedestrians). In these attacks, we chose videos
in different locations and lighting conditions to represent as
diverse an amount of variables and conditions as possible.
We detail our attack setup and data in Appendix C.

In real-world tracker hijacking attacks, we aim to cause
vehicle collisions or stoppages in AVs via tracker hijacking,
or disguise entry into unauthorized areas in video surveillance.
In misclassification attacks, we altered vehicles into pedestri-
ans to cause incorrect AV planning & control decisions. To
fool video surveillance, we misclassified pedestrians as other
appropriate classes to ignore unauthorized entry.

We prioritized safety in real-world experiments by choos-
ing low-traffic locations and times, engaging a third-party
spotter, and obtaining permission from local police. We dis-
cuss our safety measures further in Appendix C.3.

Reconstructed Components

Incorrect
Tracking
Result

(a) Tracker Hijacking

Reconstructed components present
even when tracker suppressed

(b) Cooling-shrinking

Figure 8: Detection against non-adaptive (a) tracker hijacking
and (b) cooling-shrinking attacks in the digital domain.

7.3 Non-adaptive Attacks

Table 1 shows the detection success rate of VOGUES against
non-adaptive attacks across digital and real-world domains.
For digital attacks, we observed the same success rate regard-
less of attack type: 99.49% for pedestrians and 100% for ve-
hicles. If an attack was detected in an image or video sample,
VOGUES detected all attacks against that sample. Similarly,
if an attack was not detected for a sample, VOGUES would
always fail to detect the attacks against it. This indicates that
the perturbations of non-adaptive attacks do not affect pose
extraction performance.

In Figure 8, we illustrate two successful detections against
OT attacks in the digital domain. In Figure 8-a, the pedes-
trian’s components remain in their original place despite the
tracker being hijacked to the right, raising an alert via con-
sistency checking. In Figure 8-b, all tracking results are sup-
pressed, but the components of a targeted vehicle are still
present, again raising an alert via consistency checking.

In our real-world experiments, VOGUES detected 100% of
tracker hijacking and misclassification attacks against pedes-
trians, and 90.9% / 91.67% of tracker hijacking / misclassi-
fication attacks against vehicles. Real-world attacks against
pedestrians in restricted areas focus on attackers disguising
their entry. Unlike digital domain attacks, these areas are
typically well-lit and freer of crowds and occlusions, which
enables VOGUES to extract components more precisely, im-
proving the success rate.

However, overall we observe that VOGUES is slightly more
successful in the digital domain than in the physical domain,
with an average success rate of 99.49% vs. 94.06% in the real
world. We attribute this to the larger sample size of digital
attacks compared to physical attacks. In the real world, the
detection failures were for very similar cases, such as misclas-
sified vehicles that were distant and shrouded in darkness.

Figure 9 shows how VOGUES successfully detects physical-
domain tracker hijacking attacks. On the left, the attacker
hijacks the pedestrian’s tracker to the left of the image to
disguise their entry into an unauthorized area to the right.
However, the pedestrian’s components remain perceivable
as they enter the restricted area. As they appear in distinct

Reconstructed Components

Tracker Bounding Box

Reconstructed Components
Hijacked
Tracker

Figure 9: Two successful detections against non-adaptive
tracker hijacking for physical domain video surveillance and
autonomous driving.

Hijacked Tracker

Hijacked
Components

(a) Without Validation (b) With Validation

Tracker
Bounding

Box

Reconstructed Components

(c) Real World

Figure 10: Adaptive attacks (a) digitally applied against a
real-world video, without reconstruction validation, causing
an unnatural component reconstruction, (b) against a digital
dataset with reconstruction validation, removing component
reconstruction results entirely to conduct cooling-shrinking,
and (c) in the real world, where adaptive attacks failed to
fully suppress component reconstruction.

locations, this raises a component consistency alert. On the
right, a tracker hijacking attack moves the truck’s bounding
box outside the path of the AV, attempting to induce a collision.
However, the vehicle’s reconstructed components remain in
their original position, and an alert is raised.

7.4 Adaptive Attacks
We assess VOGUES against adaptive attackers (formulated in
Section 6.1), which aims to simultaneously evade its compo-
nent reconstruction and accomplish the attack goal.

7.4.1 Digital Attacks

In this set of experiments, we do not place any physical con-
straints on digital attacks, i.e., realistic perturbation regions.
We compute the average per-pixel perturbation required
to evade VOGUES successfully, quantifying the physical
realizability of the attacks, rather than examining the attack
success rate (which would be 100%). Below, we empirically
demonstrate that increasing required perturbations also
increases adaptive attack difficulty against VOGUES.
Without Reconstruction Validation. We measure the utility
of reconstruction validation by comparing adaptive attack
requirements with and without validation deployed. That is,
without validation, the attacker simply specifies a target zone
for the pose information (given as a bounding box) rather than
a target pose. This method has looser success requirements,

as the attacker simply has to hijack the pose into the correct
region without worrying about a valid shape over time. In this
case, any choice of target pose successfully evades VOGUES.

We find that, across all attacks, the average change in
perturbation amount between non-adaptive and adaptive
attacks without reconstruction validation is 21.91%±4.92%.
Figure 10-a illustrates the visual impact of such an attack.
Both the tracker and the pedestrian’s components have been
hijacked to the left of the image, away from the restricted
area. Although the pose is consistent, it is in an unnatural
shape, with several joints missing and the remaining limbs
unnaturally stretched. The looser success requirements lead
to fewer required perturbations, which are certainly more
visible than the almost imperceptible noise in Figures 8
and 9. However, employing validation makes the required
perturbations even stronger.

With Reconstruction Validation. With reconstruction vali-
dation, the attacker must now achieve a target pose that evades
our one-class LSTM network. Although one or more solu-
tions always exist, and our adaptive attack will choose the
target pose that has the least required perturbations to achieve,
reconstruction validation ensures that a large perturbation
amount is required to evade detection, which is conspicuous
and difficult to achieve in real-world settings (Section 7.4.3).

Specifically, the average change in perturbation between
non-adaptive and adaptive attacks with validation is 49.9%±
3.3% across all attacks, approximately doubling the without-
validation amount. This comes with only a 0.05 fps increase
in running time, making it feasible to employ. The average
per-pixel difference (|I − Ip|) between the perturbed image
and the original image amount is 127.27±8.43, with a max
difference of 255 (black areas of the image become white).
Overall, the required perturbation for each sample depends
on the brightness of the environment, with the least bright
sample (averaged over all pixels) having the lowest change in
perturbation of 33.14% between non-adaptive and adaptive
attacks, and successively brighter samples requiring further
perturbations to prevent being washed out.

Figure 10-b shows the visual impact of adaptive at-
tacks under reconstruction validation, where an adaptive
cooling-shrinking attack removes all trackers and component
sets. Although both object detection and pose extraction
have had their results completely suppressed, the required
perturbations are visually striking.

Previous user studies [21] for visibility of similar pose-
hijacking adversarial perturbations showed that, above a max-
imum ||I − Ip||∞ value of 32, over 97.84% of participants are
able to clearly see the perturbations. This increases the chance
of an AV operator taking manual control over their vehicle, or
a pedestrian notifying authorities and interrupting the attack.

7.4.2 Constrained Digital Attacks

To quantify the effect of the surrounding layout on the success
of adaptive attacks, we constrain the perturbations through
LiDAR-based attack zone generation [36]. Applying this ap-
proach to DriveTruth [35], an autonomous driving data gener-
ator built on the CARLA simulator, we create a dataset with
identified physically perturbable regions. This allows us to
generate attacks that perturb invalid areas, e.g., the sky and
bright lights in an environment. Our final dataset contains
40 videos with randomized environmental factors, including
road traffic, victim speed, and traffic light timing.

Under constraints enforced on the perturbable regions, the
adaptive attack success rate drops by 15%. 10% of attacks
are detected and 5% of attacks fail to achieve their goals. The
failure cases are due to the limited perturbable regions in a
sample, which are smaller than the successful cases.

These results show that the layout of the environment in-
fluences whether or not an adaptive attack can work in the
physical world, even when we assume the projector’s strength
is infinite and unaffected by any light source.

7.4.3 Real-world Attacks

In this set of experiments, we constrain noise generation
to physically perturbable regions for physical domain adap-
tive attacks; however, unlike digital attacks, the projector no
longer has infinite perturbation strength. This makes the pro-
jected perturbations more susceptible to environmental light-
ing conditions, overpowering and washing out the adversarial
noise [35]. As a result, VOGUES detects 100% of the successful
physically launched adaptive attacks.

Figure 10-c shows an example of a physically launched
tracker-hijacking attack. The adaptive noise suppresses the
component reconstruction elements, such as the neck and
much of the torso. However, the effect is incomplete, and the
remaining unaffected reconstructed components are enough
for VOGUES to detect the inconsistency and generate an alert.

Projectors with higher power can generate the required
adaptive perturbations in the physical domain, but they are
also more expensive. To estimate the projector perturbation
cost [33], we calculate the luminance required for projected
noise with ℓ∞, ambient luminance, and distance square,
i.e., Lumen ∝ ℓ∞(∆) · Illum ·d2.

We observed an ambient luminance of 301x, and our ∼200
projector was able to effect perturbations at ℓ∞ = 0.1 at a
distance of two meters. Scaling to the required ℓ∞ of 1 for
adaptive attacks, an attacker would need a 9K-lumen projector,
typically priced at $13K [9], and in daytime lighting condi-
tions, where ambient illuminance is 40 klx, a 75K-lumen pro-
jector would be required, which is priced around $375K [3].

Table 2: Comparison of VOGUES’s performance with other
OD defenses at detecting object misclassification, changing
stop signs into pedestrians in the BDD100K dataset. We
note that none of the other systems are able to detect tracker
hijacking and cooling-shrinking attacks on OT.

Method Detection Rate FPR

VOGUES 98.48% 1.78%
PercepGuard [33] 99% 5%
SCEME [29] 81.67% 8.33%
KEMLP [16] 93.75% 0%

7.5 False Positive Rate Analysis
We evaluated VOGUES on 1,600 benign samples from the
BDD100K dataset and 1,442 samples from the MPII dataset,
for a total of 3,042 samples. Because no attacks were con-
ducted for this set of experiments, we counted a false positive
for every sample that VOGUES generated an alert.

Across all samples, VOGUES has a total false positive rate
of 3.29%, 2.98% for video surveillance, and 1.78% for au-
tonomous driving. 8% of FPs were caused by errors in the vic-
tim’s object detection and tracking pipeline rather than errors
in VOGUES. For example, in cases where an object is obscured
by motion blur, the object detection and tracking pipeline
fails to lock onto the object while the reconstruction pipeline
perceives it, creating an inconsistency between components.

All other FPs were due to component reconstruction errors,
such as extracting two or more component sets for one object.
This can occur in uneven lighting conditions or when the
object is obscured by the environment. As computer vision
advances and pose estimation models improve, component
reconstruction will be able to better handle these edge cases.

8 Discussion and Limitations

Comparison of VOGUES with Existing Countermeasures.
To our knowledge, there are currently no practical defense or
detection approaches against OT attacks. However, several
state-of-the-art defenses for OD exist, which aim to mitigate
misclassification attacks in the AD domain. These defenses
do not work against tracker hijacking and cooling-shrinking
attacks. Specifically, using the BDD100K dataset [59], we
evaluated PercepGuard [33], SCEME [29], and KEMLP [16]
against both attacks, and all three defenses had a 0% detection
rate. Our tracker hijacking attacks, moving a vehicle 200
pixels to the left or right, emulated real-world lane changes,
while our cooling-shrinking attacks, removing suppressing all
OD/OT results from the start of the attack, emulated empty
environments without objects. Both scenarios are contextually
consistent under previous OD defenses.

However, previous defenses were built for the OD
domain, whose attacks have different characteristics. In
Table 2, we compare these defenses with VOGUES against

misclassification attacks on OD, changing the stop sign
class into the pedestrian class. We note that VOGUES is
not mutually exclusive with any of these defenses, and we
encourage using OD-specific defenses alongside VOGUES for
the best coverage against different attacks.

We found that KEMLP [16] yields a 0% FPR, with its
first-order logic approach less susceptible to FPs compared
to approaches relying on neural networks, including VOGUES.
However, KEMLP’s detection rate is 4.73% lower than
VOGUES’s, requiring more precise application-specific knowl-
edge rules to detect attacks. In contrast, VOGUES does not need
application-specific knowledge since component consistency
principles apply to all objects with extractable components.
PercepGuard [33], similarly, yields a 0.52% higher detection
rate than VOGUES, but its FPR is 3.22% higher because it
can detect certain benign movement behaviors (e.g., aborting
a lane change by swerving back into the original lane) as
attacks. Unlike PercepGuard, VOGUES relies less on temporal
features, such as movement, to detect attacks and more on
the appearance of objects. Lastly, SCEME yields a 16.81%
lower detection rate and 6.55% higher FPR than VOGUES.
Unlike VOGUES, SCEME is heavily affected by the richness
of object context and performs poorly when there are fewer
objects in a scene (e.g., in foggy or dark driving conditions).
Extending Object Classes. We demonstrated the effective-
ness of VOGUES on the pedestrian and vehicle classes as
they are the most critical object classes in safety-critical
autonomous driving and video surveillance. Here, we study
how VOGUES can extend to other classes and domains.

To make VOGUES work for arbitrary classes, users first need
to create appropriate component definitions for each new ob-
ject class. Once components are defined, the other algorithms
of VOGUES work without any additional implementation. For
example, Figure 11 shows how a DriveTruth [35] dataset is
used to define components for a traffic sign or traffic light.
We use the semantic LiDAR data to define a traffic sign’s
components as a hexagon encompassing the sign’s corners,
or a traffic light’s components as its four corners and active
light. Once the class’s general shape is defined, it can be
automatically fitted to semantically segmented data to train
a neural network model for extracting components, as we
described in Section 5.2.

However, we note that it is more challenging to define
components for certain classes of objects with irregular,
unique patterns, such as trees. Evaluations on a generalized
VOGUES without class-specific post-processing shows that
it has 0.99% higher attack detection rates in the real world,
albeit with a 0.81% higher FPR (Appendix D). Future work
can extend experiments to assess VOGUES in rare scenarios,
such as extreme weather conditions.
VOGUES as a Full Defense. VOGUES alerts the system when
an attack is detected, but does not take any automated recov-
ery actions, such as issuing commands to an AV to mitigate
or prevent the attack. It is challenging to anticipate all the

Extracted Components

Extracted Components

Extracted Components

Extracted Components

Figure 11: Example of how VOGUES generalizes to other
object classes: Components extracted from a traffic sign (left)
and a traffic light (right).

consequences of attacks in different application domains. By
outputting alerts, VOGUES gives the user or system the flexi-
bility to decide how to respond optimally to an attack.

We plan to extend VOGUES into a complete defense by
implementing a continuous scoring system, e.g., using the IoU
between objects and their components, to allow ASs to make
robust decisions. To prevent false positives from impeding
the operation of an AS, alerts from VOGUES can be used as
an indicator or confidence value to be used by a higher-level,
decision-making security system. For example, in the AV
domain, the victim system can adopt more cautious driving
behavior in response to a single isolated alert. For consecutive
alerts, the victim vehicle might yield control to a human driver.
Similarly, in video surveillance, a single alert might notify a
human security guard, while consecutive alerts should directly
sound the alarm for unauthorized entry. As the accuracy of the
perception and component reconstruction algorithms improve,
VOGUES can be updated to have a lower FPR.

9 Conclusions

We introduce VOGUES, the first practical countermeasure
against tracker hijacking and cooling-shrinking attacks.
VOGUES models the human principle that any visible object
must also have tangible constituent components. VOGUES is
also effective against OD attacks, including misclassification
and object deletion. VOGUES leverages pose estimation
to reconstruct the key components of objects in a video
frame. To enhance robustness against adaptive adversaries,
we propose an LSTM validator to detect adaptive attacks
against the reconstruction framework. We evaluated VOGUES

against adaptive and non-adaptive attackers, using digital
datasets alongside data collected in the real world. VOGUES

successfully detects 99.49% of attacks in the digital domain
and an average of 93.81% in the physical domain.

Acknowledgments

We thank our shepherd and the anonymous reviewers for
their valuable suggestions. This work has been partially sup-
ported by the National Science Foundation (NSF) under grant
CNS-2144645, and the Army Research Office (ARO) under

grant W911NF2110320. The views expressed are those of the
authors only. We would like to thank Chenyi Wang for his
insights on the writing and formal notation.

References

[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt
Schiele. 2d human pose estimation: New benchmark and state of
the art analysis. In Computer Vision and Pattern Recognition, 2014.

[2] Gaurav R Bagwe. Video frame reduction in autonomous vehicles. In
Michigan Technological University (Thesis), 2018.

[3] Barco. Xdl-4k75. https://www.10kused.com/product/barco-
xdl-4k75-lhjz-52035/. [Online; Accessed 27-August-2023].

[4] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Simple online and realtime tracking. In IEEE International Conference
on Image processing (ICIP), 2016.

[5] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and Privacy, 2017.

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
and Hartwig Adam. Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation. In European Conference on
Computer Vision (ECCV), 2018.

[7] Ka-Ho Chow, Ling Liu, Margaret Loper, Juhyun Bae, Mehmet
Emre Gursoy, Stacey Truex, Wenqi Wei, and Yanzhao Wu. Adver-
sarial objectness gradient attacks in real-time object detection systems.
In IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems, and Applications, 2020.

[8] Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L Yuille, and
Xiaogang Wang. Multi-context attention for human pose estimation.
In Computer Vision and Pattern Recognition (CVPR), 2017.

[9] Epson. Pro l1490u. https://tinyurl.com/444ynkej. [Online;
Accessed 15-October-2023].

[10] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust
physical-world attacks on machine learning models. arXiv preprint
arXiv:1707.08945, 2017.

[11] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. RMPE: Re-
gional multi-person pose estimation. In International Conference on
Computer Vision (ICCV), 2017.

[12] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through
a network. Canadian Journal of Mathematics, 1956.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Computer
Vision and Pattern Recognition (CVPR), 2012.

[14] Alex Graves. Supervised sequence labelling. In Supervised sequence
labeling with recurrent neural networks. Springer, 2012.

[15] Lie Guo, Linhui Li, Yibing Zhao, and Zongyan Zhao. Pedestrian
tracking based on camshift with kalman prediction for autonomous
vehicles. International Journal of Advanced Robotic Systems, 2016.

[16] Nezihe Merve Gürel, Xiangyu Qi, Luka Rimanic, Ce Zhang, and Bo Li.
Knowledge enhanced machine learning pipeline against diverse adver-
sarial attacks. In International Conf. on Machine Learning, 2021.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In International Conference on Computer Vision, 2017.

[18] Shahar Hoory, Tzvika Shapira, Asaf Shabtai, and Yuval Elovici.
Dynamic adversarial patch for evading object detection models.
arXiv:2010.13070, 2020.

[19] Hao Huang, Yongtao Wang, Zhaoyu Chen, Zhi Tang, Wenqiang Zhang,
and Kai-Kuang Ma. Rpattack: Refined patch attack on general object
detectors. In International Conf. on Multimedia and Expo, 2021.

https://www.10kused.com/product/barco-xdl-4k75-lhjz-52035/
https://www.10kused.com/product/barco-xdl-4k75-lhjz-52035/
https://tinyurl.com/444ynkej

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial
transformer networks. Advances in neural information processing
systems, 2015.

[21] Naman Jain, Sahil Shah, Abhishek Kumar, and Arjun Jain. On the
robustness of human pose estimation. In Computer Vision and Pattern
Recognition Workshops, 2019.

[22] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu.
Poltergeist: Acoustic adversarial machine learning against cameras
and computer vision. In IEEE Symp. on Security and Privacy, 2021.

[23] Shuai Jia, Chao Ma, Yibing Song, and Xiaokang Yang. Robust tracking
against adversarial attacks. In Euro. Conf. on Computer Vision, 2020.

[24] Yunhan Jia Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Hao Chen,
Zhenyu Zhong, and Tao Wei Wei. Fooling detection alone is not enough:
Adversarial attack against multiple object tracking. In International
Conference on Learning Representations (ICLR), 2020.

[25] Lei Ke, Shichao Li, Yanan Sun, Yu-Wing Tai, and Chi-Keung Tang.
Gsnet: Joint vehicle pose and shape reconstruction with geometrical
and scene-aware supervision. In Euro. Conf. on Computer Vision, 2020.

[26] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. Real-time 3d
reconstruction and 6-dof tracking with an event camera. In European
Conference on Computer Vision, 2016.

[27] kkew3. Rich-documented pytorch implementation of carlini-wanger’s
l2 attack, 2018. [Online; Accessed 15-October-2022].

[28] Daniel Konig, Michael Adam, Christian Jarvers, Georg Layher, Heiko
Neumann, and Michael Teutsch. Fully convolutional region proposal
networks for multispectral person detection. In Computer Vision and
Pattern Recognition Workshops, 2017.

[29] Shasha Li, Shitong Zhu, Sudipta Paul, Amit Roy-Chowdhury, Chengyu
Song, Srikanth Krishnamurthy, Ananthram Swami, and Kevin S Chan.
Connecting the dots: Detecting adversarial perturbations using context
inconsistency. In European Conference on Computer Vision, 2020.

[30] Yanmiao Li, Yingying Xu, Yankun Cao, Jiangang Hou, Chun Wang,
Wei Guo, Xin Li, Yang Xin, Zhi Liu, and Lizhen Cui. One-class lstm
network for anomalous network traffic detection. Applied Sciences,
2022.

[31] Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. Computer
architectures for autonomous driving. IEEE Computer Magazine, 2017.

[32] Javier García López, Antonio Agudo, and Francesc Moreno-Noguer.
Vehicle pose estimation via regression of semantic points of interest.
In Intl. Symp. on Image and Signal Processing and Analysis, 2019.

[33] Yanmao Man, Raymond Muller, Ming Li, Z. Berkay Celik, and Ryan
Gerdes. That Person Moves Like A Car: Misclassification Attack
Detection for Autonomous Systems using Spatiotemporal Consistency.
In USENIX Security Symposium, 2023.

[34] Garima Mathur, Devendra Somwanshi, and Mahesh M Bundele. In-
telligent video surveillance based on object tracking. In International
Conference and Workshops on Recent Advances and Innovations in
Engineering (ICRAIE), 2018.

[35] Raymond Muller, Yanmao Man, Z. Berkay Celik, Ming Li, and Ryan
Gerdes. DriveTruth: Automated autonomous driving dataset generation
for security applications. In International Workshop on Automotive and
Autonomous Vehicle Security (AutoSec), collocated with NDSS, 2022.

[36] Raymond Muller, Yanmao Man, Z. Berkay Celik, Ming Li, and Ryan
Gerdes. Physical Hijacking Attacks against Object Trackers. In ACM
Conference on Computer and Communications Security (CCS), 2022.

[37] Ben Nassi, Yisroel Mirsky, Dudi Nassi, Raz Ben-Netanel, Oleg Drokin,
and Yuval Elovici. Phantom of the adas: Securing advanced driver-
assistance systems from split-second phantom attacks. In ACM SIGSAC
conference on computer and communications security, 2020.

[38] Alexander Neubeck and Luc Van Gool. Efficient non-maximum sup-
pression. In International Conference on Pattern Recognition (ICPR),
volume 3, 2006.

[39] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass net-
works for human pose estimation. In European Conference on Com-
puter Vision, 2016.

[40] Andreas Nussberger, Helmut Grabner, and Luc Van Gool. Aerial object
tracking from an airborne platform. In international conference on
unmanned aircraft systems (ICUAS), 2014.

[41] Milan Ondrašovič and Peter Tarábek. Siamese visual object tracking:
A survey. IEEE Access, 9, 2021.

[42] Optoma. Optoma lv130 ultra-portable projector. https://
www.optoma.com/vn/product/lv130/, 2021. [Online; Accessed 11-
October-2022].

[43] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on Security and
Privacy (S&P), 2016.

[44] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in Neural Information Processing Systems (NeurIPS), 2015.

[46] Héctor Corrales Sánchez, Antonio Hernández Martínez,
Rubén Izquierdo Gonzalo, Noelia Hernández Parra, Ignacio Parra
Alonso, and David Fernandez-Llorca. Simple baseline for vehicle pose
estimation: Experimental validation. IEEE Access, 8, 2020.

[47] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler.
Neuro-symbolic artificial intelligence: Current trends. AI Communica-
tions, 2021.

[48] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of
101 human action classes from videos in the wild. Center for Research
in Computer Vision, 2012.

[49] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. International Conference on Learning Representa-
tions (ICLR), 2013.

[50] Waymo Team. Utilizing key point and pose estimation for the task of
autonomous driving, 2022.

[51] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow,
Dan Boneh, and Patrick McDaniel. Ensemble adversarial training:
Attacks and defenses. Intl. Conf. on Learning Representations, 2017.

[52] Christian Wittpahl, Hatem Ben Zakour, Matthias Lehmann, and Alexan-
der Braun. Realistic image degradation with measured PSF. Au-
tonomous Vehicles and Machines, 2018.

[53] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal.
Patchguard: A provably robust defense against adversarial patches via
small receptive fields and masking. In USENIX Security Symp., 2021.

[54] Chong Xiang, Saeed Mahloujifar, and Prateek Mittal. {PatchCleanser}:
Certifiably robust defense against adversarial patches for any image
classifier. In USENIX Security Symposium, 2022.

[55] Yuliang Xiu, Jiefeng Li, Haoyu Wang, Yinghong Fang, and Cewu Lu.
Pose Flow: Efficient online pose tracking. In The British Machine
Vision Conference (BMVC), 2018.

[56] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting
adversarial examples in deep neural networks. Network and Distributed
System Security (NDSS), 2017.

[57] Bin Yan, Dong Wang, Huchuan Lu, and Xiaoyun Yang. Cooling-
shrinking attack: Blinding the tracker with imperceptible noises. In
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020.

[58] Zhuolin Yang, Zhikuan Zhao, Boxin Wang, Jiawei Zhang, Linyi Li,
Hengzhi Pei, Bojan Karlaš, Ji Liu, Heng Guo, Ce Zhang, et al. Improv-
ing certified robustness via statistical learning with logical reasoning. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

https://www.optoma.com/vn/product/lv130/
https://www.optoma.com/vn/product/lv130/

[59] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving
video database with scalable annotation tooling. Computer Vision and
Pattern Recognition Conference (CVPR), 2020.

[60] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang,
and Kai Chen. Seeing isn’t believing: Towards more robust adversarial
attack against real world object detectors. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[61] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming
Hu. Distractor-aware siamese networks for visual object tracking. In
European COnference on Computer Vision (ECCV), 2018.

Appendix

A RPN and STN Isolation

VOGUES uses two methods to isolate object instances, which
are selected to account for different conditions the objects
may appear in. RPNs (Figure 12a) learn how to generate
feature maps based on an input image. The maps can be used
to regress the tightly cropped object instance. This is ideal
for targets that can appear from many different angles and
positions, such as vehicles. Meanwhile, Spatial Transformer
Networks (Figure 12b) regress scaling and plane rotation
parameters (θ) to better isolate objects that are among crowds
or at long distances, such as pedestrians.

B Pose Hijacking

Our adaptive attack seeks to “hijack” the pose estimation
results of component reconstruction to match VOGUES’s
results with the adversarial attack goal. However, attacks
against pose estimation often result in unnatural poses, with
limbs or the spine bent at odd angles. Figure 13 demonstrates
pose hijacking attempts against two common HPE models,
attention [8] (Figure 13-a) and 8-stacked [39] (Figure 13-b).

In these attacks, the attacker aims to hijack the original
pose (in orange) into the pose of a man sitting (in red, on top
of the original pose). Different model architectures result in
slightly different behavior: for example, attention HPEs may
experience less displacement in the overall pose, but they may
fail to detect certain limbs. Meanwhile, stacked HPEs may
have a greater pose displacement, creating a warped shape
as individual key points within the pose are shifted indepen-
dently. No matter the architecture, the difference in resistance
to perturbation between key points means that exponentially
stronger perturbations are required for a full pose hijacking.
According to user studies, the required perturbations can be
detected 97.84% of users [21].

C Real-World Attack Details

C.1 Attack Setup

For tracker hijacking attacks, we used an Optoma LV130
mini projector [42] to project adversarial perturbations onto
the environment. Against AVs, we place the projector on the
dashboard of the victim vehicle, while against surveillance,
we place the projector directly behind our security camera to
effect perturbations within its field of view.

For misclassification attacks against AVs, we mounted a 40-
inch LCD monitor to the back of a vehicle via a tailgate hitch
mount and used the monitor as a dynamic adversarial patch.
The vehicle was driven normally, but extra caution was taken
when making sharp turns to prevent the mount from swinging.

In our real-world experiments, we used an HD camera to
record footage in 1920x1080 resolution. For vehicle-based
experiments, the camera was mounted directly above the dash-
board to simulate the camera of an autonomous vehicle. For
surveillance experiments, the camera was placed high on a
wall looking downward at a building entrance to simulate a
security camera watching a restricted area.

C.2 Video Selection

In our evaluation of real-world non-adaptive attacks against
AVs, we have three extra videos for misclassification at-
tacks compared to tracker hijacking attacks. This is due to
three more classification attacks against AVs succeeding than
tracker hijacking. For both adaptive and non-adaptive attacks,
we removed videos that were too similar to other samples.
This was done to reduce repetitive videos that may artificially
boost detection rates by having the exact same structure. No
removal was necessary for the AV domain, as variations in
traffic, pedestrians crossing roads, and other environmental
factors created a large variety in collected videos. Yet, in the
surveillance domain, with a static camera observing the same
position, more similarity between videos was encountered,
resulting in fewer pedestrian examples than AV examples.

C.3 Safety in Real-World Experiments

We made safety our highest priority during real-world
experiments. We obtained permission to conduct our
experiments from the Special Services Division of the local
police department, and patrol officers were notified before
the experiments. We carefully selected empty locations with
sufficiently little traffic, as determined by a third-party spotter
who continually supervised conditions to ensure safety.
For monitor experiments, we secured the LCD monitor via
bungee cord to absorb shock from sharp movements and
prevent it from swinging around the environment.

During all vehicle experiments, we drove on roads where
the speed limit was 25 MPH, and we did not exceed 20

Input Image Feature Mapping

Region Proposal

RPN Classifier

(a)

θ

Localization Net

Tθ(G)

Grid
Generator

Instance Sampler

Input Isolated Object

Object
to isolate

(b)

Figure 12: VOGUES’s process of isolating objects with (a) Region Proposal Networks and (b) Spatial Transform Networks.

(a) Attention HPE (b) 8-stacked HPE

Figure 13: Results of adversarial attacks on hourglass pose
estimation (HPE) models (with original pose beneath in or-
ange) in video surveillance domains.

Table 3: VOGUES’s attack detection performance with/without
class-specific post-processing.

Mode Digital Attacks Real-World Attacks FPR

Class-specific 99.49% 94.06% 3.29%
Generalized 99.49% 95.05% 4.1%

MPH when driving. We avoided aggressive acceleration and
braking and obeyed traffic rules. Experiments were paused
every 5 minutes in order to check the equipment and ensure
it had not come loose or unstable.

All experiments were conducted with three experienced
personnel at a time: an attack equipment operator, a victim
equipment operator, and a third-party spotter to supervise
the experimental conditions. All 3 maintained constant
communication via phone during the experiments. The
experiments were supervised and approved by professors
experienced in autonomous vehicle research and experiments.
In line with standards set by previous works [33, 36, 37], we
conducted experiments without direct exposure to sunlight
to reduce the effects of ambient lighting conditions on the
effectiveness of the tested attacks.

D Extension to Other Classes and Domains

D.1 Ablation Study on General Pipeline

To comprehensively evaluate the effectiveness of VOGUES on
general classes, we evaluate VOGUES with both class-specific
post-processing, such as pose-flow tracking for pedestrians,
and with a general pipeline where all classes conform to the
minimum specifications outlined in Sections 5.1 to 5.3. The

OD Bounding box

Multiple Extracted Human Components!

Figure 14: A common false positive case in sports tracking,
where a crowd of people not in camera focus will be extracted
as one bounding box by OD but have multiple components
extracted. These cases are uncommon in the safety-critical
domains of autonomous driving and surveillance due to the
use of focus-free cameras.

results are described in Table 3. Overall, we observe identical
performance in digital attacks and a 0.99% greater attack de-
tection rate for the generalized system than the class-specific
system. However, this comes at a 0.8% higher false positive
rate for the general system. The general system is more aggres-
sive in outputting detection alerts because the pose results are
no longer corrected through tracking. The lack of correction
generates incorrect component reconstructions more often,
whether or not an actual attack is performed. These results
suggest that although the general specifications for all classes
can achieve promising performance, victims may choose to
enhance the pipeline with class-specific post-processing for
more accurate results, depending on their requirements.

D.2 Non-Safety Critical Domains
We evaluated VOGUES’s performance in the sports tracking
domain, where a camera automatically tracks the movements
of athletes to keep them in focus. Sports tracking is less safety-
critical compared to autonomous driving and surveillance but
contains very different behaviors. Across 782 sports tracking
examples from the MPII dataset, VOGUES obtains a 100%
attack detection rate, but also a 20.2% false positive rate.

Figure 14 illustrates such an example of a common sports
tracking-related false positive. An out-of-focus crowd is
extracted as a single object by object detection, but multiple
objects are seen by component extraction. Autonomous
vehicle and surveillance applications typically use focus-free
cameras [52], and do not suffer from focus-related blurring
issues. Sports tracking can also contain more contorted poses
that are more difficult to extract than poses from other appli-
cations. As pose estimation models are improved, component
reconstruction may better handle more difficult domains.

	Introduction
	Background and Related Work
	Object Detection and Tracking
	Perception Attacks
	Existing Countermeasures
	OD Defenses
	OT Defenses

	Threat Model
	Motivation and Challenges
	Rationale
	Design Challenges

	VOGUES
	Isolating Object Instances
	Pose Extraction
	Post-processing
	Consistency Checking

	Adaptive Attacks
	Formulation
	Reconstruction Validation
	Adaptive Attack Analysis

	Evaluation
	Implementation
	Evaluation Setup
	Attacks
	Digital Datasets
	Real-world Physical Experiments

	Non-adaptive Attacks
	Adaptive Attacks
	Digital Attacks
	Constrained Digital Attacks
	Real-world Attacks

	False Positive Rate Analysis

	Discussion and Limitations
	Conclusions
	RPN and STN Isolation
	Pose Hijacking
	Real-World Attack Details
	Attack Setup
	Video Selection
	Safety in Real-World Experiments

	Extension to Other Classes and Domains
	Ablation Study on General Pipeline
	Non-Safety Critical Domains

