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ABSTRACT

Modern autonomous systems rely on both object detection and
object tracking in their visual perception pipelines. Although many
recent works have attacked the object detection component of au-
tonomous vehicles, these attacks do not work on full pipelines
that integrate object tracking to enhance the object detector’s ac-
curacy. Meanwhile, existing attacks against object tracking either
lack real-world applicability or do not work against a powerful
class of object trackers, Siamese trackers. In this paper, we present
AttrackZone, a new physically-realizable tracker hijacking attack
against Siamese trackers that systematically determines valid re-
gions in an environment that can be used for physical perturbations.
AttrackZone exploits the heatmap generation process of Siamese
Region Proposal Networks in order to take control of an object’s
bounding box, resulting in physical consequences including vehicle
collisions and masked intrusion of pedestrians into unauthorized
areas. Evaluations in both the digital and physical domain show that
AttrackZone achieves its attack goals 92% of the time, requiring
only 0.3-3 seconds on average.
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1 INTRODUCTION

Object detection and object tracking are both an important part
of the pipelines of different autonomous systems in various do-
mains, such as autonomous driving [27], pedestrian detection [14],
and mobile robot navigation [2]. Extensive work has been studied
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in attacking the object detection pipeline of autonomous vehicles,
such as using stickers and patches attached to objects within a
scene to fool object detection into ignoring or misclassifying criti-
cal entities (e.g., stop signs [11, 54]). However, object detection is
only half of the visual perception pipeline in autonomous systems;
object tracking is used to build the trajectories of objects in order
to enhance the accuracy of object detection.

Unlike object detection, which involves determining the clas-
sification and bounding boxes of objects in a single frame, object
tracking involves computing the bounding box of the same object
over multiple frames. By keeping a record of the same object’s
movement over time, object trackers are able to estimate velocities
and trajectories for objects, which allows for a more consistent
and accurate bounding box calculation compared to pure object de-
tection [22]. This accuracy enhancement also provides robustness
against object detection attacks. With a tracker deployed, attacks
purely targeting object detection must succeed at least 98% of the
time over 60 consecutive frames, which is infeasible for current
attacks against object detection [22]. There are many different kinds
of trackers, but Siamese tracking remains the most prevalent due
to their inherent balance between accuracy and efficiency, which
makes them suitable for real-time applications [37].

Because object tracking does not involve classifying objects, and
instead focuses on calculating their bounding boxes, attacks against
it focus on tracker hijacking, the technique of deviating bounding
boxes calculated by an object tracker in a controlled direction. There
are two types of tracker hijacking attacks: move-in and move-out.
In the move-in attack, the bounding box of an object (e.g., vehicle,
pedestrian, tumbleweed, animal) not already in the target system’s
path is moved into the path to disrupt its operation. For example,
if the target system is a vehicle, it will stop or deviate from its
path to avoid the hijacked object. If the target system is a security
camera equipped with pedestrian tracking, it will sound a false
alarm. Similarly, a move-out attack takes the bounding box of an
object in the target system’s path and moves it outside of the path.
For a vehicular target system, this will cause a collision as the
system determines an obstacle has been cleared from the path. For
surveillance, a move-out attack can mask the entry of an intruder.

Because object detection attacks are not feasible against ob-
ject tracking, tracker hijacking attacks take advantage of elements
unique to the tracking domain that do not exist in object detection.
For example, one previous work focused on attacking Simple Online
Real-Time (SORT) trackers [22], which use a straightforward ve-
locity estimation model to track objects. Unfortunately, this attack
exploited a design flaw specific to the SORT algorithm, where track-
ing results are given a lifespan such that incorrect tracking results
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from a broken tracker continue to be reported for a given number of
frames. The SORT attacks are not transferable because this design
flaw does not exist in more complex tracking algorithms, such as
Siamese trackers. Another work has targeted Siamese tracking [21],
utilizing adversarial machine learning to create noise patterns that
alter tracking results. However, this attack only works in the digital
domain, as it cannot distinguish between areas that are impossible
to attack in the physical domain, such as the sun, and valid attack
areas (e.g., walls). This severely limits its applicability, requiring an
attacker to directly modify the camera output.

In this paper, we introduce AttrackZone, the first work which
can physically launch tracker hijacking attacks against Siamese
trackers. Because the physical world dynamically and unpredictably
changes, when conducting the attack, it is necessary to ensure
physically perturbable space exists beyond the potentially small
constraints of the targeted object. Therefore, we leverage 3D point
cloud data to construct attack zones, areas in an environment that
can be used in a physical domain tracker-hijacking attack. Once
these areas are determined, we exploit the Siamese heatmap pro-
posal algorithm and generate noise patterns to shift the tracker’s
focus to desired areas in the scene. We ensure that our attack is
minimally noticeable while evading established defenses (such as
Kalman Filtering) and remaining adaptive to the environment. We
then project the noise patterns onto the valid attack zones to achieve
tracker hijacking without compromising a victim vehicle’s cameras.

We evaluate the efficacy of AttrackZone against base [26] and
Distractor-aware [56] Siamese trackers in autonomous driving and
video surveillance. We demonstrate the attack success rate against
the trackers’ original test datasets, simulated data in CARLA, and
trackers deployed in real-world environments. We take a model-
agnostic approach and examine both the attack inter-transferability
between different models of Siamese trackers and the attack intra-
transferability between the same models with different parameters
and training data.We inspect and compare two different approaches,
offline and online, that are used depending on whether or not the
victim route is known. We also examine the attack parameters,
evaluating the time and projectable space needed for a successful
attack and how strong the projections must be.

We measure the raw success rate based on whether the original
goal of move-in or move-out is achieved for a given attack. Across
all evaluated Siamese tracking models, on the trackers’ original
test datasets, the attack success rate is on average 95.5%, while the
average success rate is 91.1% on the simulated dataset. For real
world attacks, we achieve an average success rate between 80.8%
and 89% depending on whether the attack is conducted online
or offline. Attacks take on average between 0.3 and 3 seconds to
achieve their goals, and only 63%-82% of the environment must
be perturbable for the attack to succeed with a 30% margin for
error. Lastly, our attack modifies each pixel on average by less than
5.86%. AttrackZone runs efficiently in real-time and evades current
defenses against tracker hijacking attacks, such as Kalman Filters
and noise cancellation.
Contributions. In this paper, we make the following contributions.

• We are the first to demonstrate a systematic process for
finding valid attack zones in projector attacks.
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Figure 1: An overview of a full autonomous system pipeline.

• We present a novel attack in the physical domain against
Siamese trackers, exploiting the design of heatmap genera-
tion to guide trackers into a specific area.

• We successfully launch attacks against three of the most
prevalent Siamese trackingmodels, evaluatingAttrackZone’s
performance in the real world against the original test datasets
for the Siamese trackers and a diverse simulated dataset.

• AttrackZone code is available at
https://github.com/purseclab/AttrackZone

for public use and validation.

2 BACKGROUND

A typical visual perception pipeline for autonomous systems
consists of an object detector and an object tracker, as shown in
Figure 1. Given a sequence of images from a camera’s video feed,
the system runs an object detector to obtain a bounding box and
the object class for each object of interest [40]. These bounding
boxes are then fed into an object tracker, which first computes its
own bounding box based on its historical results then combines its
results with the object detector’s [5]. This process helps smooth
out errors in bounding box predictions by providing spatiotemporal
feature consistency across frames. Lastly, it passes this informa-
tion to subsequent modules, such as the planning module of an
autonomous vehicle that plans the vehicle’s driving paths [52].

2.1 Object Detection and Tracking

To reason about the surrounding environment, an autonomous
system uses a real-time object detection algorithm to classify objects
in its vicinity. These algorithms typically employ Convolutional
Neural Networks (CNNs) to detect objects in real-time. For instance,
YOLO [40] is a popular network architecture because of its high
speed and performance compared to other object detection archi-
tectures such as R-CNN [41] and DPM [48]. YOLO and its variants
split an image into a square grid of a pre-configured size. For each
square in the grid, they assign probabilities that the square is of
each given class. They then congregate the squares into individual
bounding boxes and return them.

Object tracking algorithms, on the other hand, estimate an ob-
ject’s heading and velocity to compute object trajectories and cor-
rect potential errors in object detection [52]. The trackers predict the
object behavior by taking into account the spatiotemporal consis-
tency of the image frames, whereas object detectors independently
reason on each input.

https://github.com/purseclab/AttrackZone
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Figure 2: Illustration of Siamese-based object trackers.

While there are many different object tracking algorithms, the
Siamese-based trackers have recently gained prevalence due to
their efficiency in real-time inference [9, 37, 56], and are commonly
employed in real-world systems, e.g., security cameras [53], robotic
vehicles [15], and intelligent surveillance [1]. Siamese-based track-
ers extract image features via a region proposal network to track
objects between frames. This enables them to yield higher accuracy
than different types of trackers such as the Simple Online Real-
time Tracking (SORT) [9], which uses velocity estimations between
frames to predict tracker position.

2.1.1 Siamese Networks. A Siamese tracker [43] uses image fea-
tures to track an object between frames rather than creating a
velocity estimation (See Figure 2). The key feature of Siamese track-
ing is the region proposal network. A Siamese network is trained
to classify each area in the image as either “background”, to be
ignored, or “target”, to be tracked. A tracking algorithm on each
frame then uses a CNN to find the regions that correspond to a
target, generating a heatmap for the target region. The heatmap
restricts the search space of the tracker to only target areas. Specif-
ically, a bounding box regression is applied to locate the correct
object, and update its tracker within that search space.

Siamese networks have different variants that differ in how
they generate the heatmap. Base Siamese Networks (BSNs), such as
SiamRPN [26], are trained only on target and background and purely
segment an image based on whether or not it should be tracked.
A recent improvement on BSNs is Distractor-aware Siamese Net-
works (DASNs), e.g., the DaSiamRPN [56] and DaSiamRPN+ [21]
models, which are trained on data with labeled distractors. By learn-
ing to ignore areas of the image likely to cause false positives in
BSNs, DASNs are able to generate more concise heatmaps focusing
on an object of interest.

3 THREAT MODEL

3.1 Attack Goal: Physical Tracker Hijacking

We consider an adversary that aims to launch a remote physical
tracker hijacking against Siamese-based object trackers with the
goal of moving-in and moving-out the objects. Tracker hijacking
is concerned purely with changing the bounding box of an object,
and is not intended to affect an object’s class. Figure 3 shows the
attack goal and outcomes of tracker hijacking against two systems,
object tracking in autonomous vehicles and pedestrian tracking in
video surveillance systems.

Move-in Attack Move-out Attack

Move-in Attack Move-out Attack

Figure 3: The attacker’s goals and outcomeswithmove-in and

move-out attacks against object trackers: (Top) autonomous

vehicles (traffic disruption, collision) and (Bottom) video

surveillance systems (false alarms, stealthy intrusion).

Move-in Attack. The adversary in this attack aims to move the
tracker of an object (e.g., vehicle, pedestrian, tumbleweed, animal)
not in the target system’s path (e.g., vehicle, drone) into its path.
The move-in attack for an autonomous vehicle stops the vehicle
prematurely with the goal of disrupting the flow of traffic and
leaving the vehicle vulnerable to an ambush. Similarly, for video
surveillance, the attack triggers the camera alarm to fool the system
into thinking someone has entered the building. This could distract
operators or cause multiple false alarms to lull the system into
ignoring accurate system warnings.
Move-out Attack. In this attack, the adversary’s goal is to move
the tracked object out of the tracker’s path. Although the object
is still there, the tracker determines that it has moved out of its
way because its tracker has deviated. For autonomous vehicles, the
attacker can cause the target system to collide with an object, which
may be a pedestrian that may suffer fatal injuries. The move-out
attack for video surveillance prevents a camera alarm system from
seeing someone enter a building, causing a stealthy entrance into a
typically secure facility.

3.2 Attack Model and Assumptions

We consider an attacker with two capabilities. First, we assume
that the attacker knows the location of the system running the
object tracker (where the camera or cameras are mounted). With
this knowledge, the attacker uses a surrogate camera (e.g., stereo
camera or camera with LiDAR) to obtain the view of the victim
camera and its 3D point cloud for identification of attack zones
(the surface of the valid objects, detailed below). An attacker can
obtain this data in real time (online) or offline. An attacker can fly a
drone-mounted low-cost/high-accessible camera and approximate
the view of the victim’s camera in real-time, ensuring a similar,
adaptable view angle. As another example, if the route of a target
autonomous vehicle is known ahead of time, an attacker can collect
the camera feed offline by driving in the same route as the victim
vehicle, or use online resources (e.g., USGS Explorer [45] with
Google Earth [13] for LiDAR and image data). The performance of
offline vs. online attacks is compared in Section 6.3.

Second, we assume the attacker has access to any open-source
Siamese-based object tracker for generating the physical perturba-
tions based on the surrogate camera feed. We show in Section 6
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that attacks constructed on a specific Siamese network (e.g., BSNs)
transfer to its variants (e.g., DaSiamRPN and DaSiamRPN+).

To conduct the tracker hijacking in the physical world, the at-
tacker aims to find stealthy and robust physical perturbations on
the surface of valid objects over time. Attacks in practical settings
require targeting a moving object and generating perturbations
which are (1) within the field of view of the victim’s camera, (2) re-
flected on objects that distract the victim’s camera feed (e.g., not on
glass surfaces and sky), (3) effective within environmental instabil-
ity (e.g., evolving lighting conditions), and (4) the least conspicuous
to human observers.

Lastly, to launch the tracker hijacking, the attacker remotely
projects the perturbations to the attack scene, e.g., by attaching a
projector to an adversarial vehicle driving near the victim vehicle,
or flying an adversarial drone with a mounted projector.

We do not assume the attacker has physical access to the tar-
get vehicle’s camera or hardware. Additionally, the adversary does
not exploit hardware vulnerabilities (e.g., LiDAR and GPS spoof-
ing/jamming exploits [4]) or software vulnerabilities (e.g., remote
code injections [17]).

4 EXISTING ATTACKS AND DESIGN

CHALLENGES

Our primary goal and challenge is conducting the tracker hijack-
ing attack in the physical world by altering the physical environ-
ment captured by the camera. With the threat model and design
goals set, we show the reasons that existing attacks on object de-
tection fail to work against object trackers, and the limitations of
existing attacks on object trackers.

4.1 Generalizability of Attacks against Object

Detectors to Trackers

Prior works have mainly studied adversarial attacks against ob-
ject detectors that take a single frame at a time, e.g., printed adver-
sarial stickers attached to a stop sign to fool the object detection re-
sults. These attacks focus on creating false objects [20, 31, 54], mask-
ing objects [3, 23], and changing a specific object’s class [11, 29, 49].

Existing attacks against object detection fail to alter the object
tracking results (and thus the actual visual perception pipeline of
autonomous systems) for two main reasons. First, attacks against
object detection do not consider the effects of adding object track-
ing to an autonomous system’s visual pipeline to ensure spatio-
temporal consistency across video frames. By keeping a record
of the movement of an object, object trackers are able to achieve
more accurate bounding box results than pure object detectors,
meaning that bounding boxes computed by an object tracker have
fundamentally different behaviors than bounding boxes computed
by object detectors [22]. Second, object trackers naturally improve
the robustness of object detection by taking consistent and stable
results across multiple frames. Specifically, with an object tracker
integrated into the autonomous system pipeline, an attacker must
fool the object detector 98% of the time throughout 60 consecutive
frames to successfully hijack a tracker [22]. This success rate is not
feasible for current attacks against object detection [6, 11, 29, 54],
making them unable to offer promise against object trackers.

4.2 Attacks against Object Trackers

Existing works that attack object trackers are very limited. A
recent work has demonstrated tracker hijacking against SORT track-
ers by exploiting its reliance on velocity estimation as opposed to
actual image features [22]. This makes the attack infeasible against
many other trackers (including Siamese trackers) that do not use
velocity estimation to track objects. Additionally, the attacks are
generated in digital simulation (directly changing pixel values fed
into the tracker), and restrict themselves to a patch placed on a
single vehicle, limiting its attack surface area and success rate.

With the growing prevalence of Siamese-based trackers, a few
attacks against them have been recently proposed. The RTAA at-
tack aims to move the tracker away from its correct position [21],
and the Cooling-Shrinking (C-S) attack removes the tracker from
existence [50]. Both attacks are digital domain attacks, directly
changing the input image pixels without physically launching the
attack. They also generate noise without considering the physical
constraints, leading to physically infeasible attacks, where imper-
turbable regions, such as the sky and sun, are perturbed.

Additionally, the consequences of existing tracker attacks on
the autonomous system’s decision-making pipeline are not well
defined. The RTAA attack does not specify a desired end position
for the tracker, causing it to move randomly and unrealistically
around an image. This greatly reduces the attack’s stealthiness and
makes it easy to prevent, e.g., by applying a Kalman Filter even
without knowledge of the attack. While the goal of the C-S attack
is to hide an object from the Siamese tracker, it does not hide it
from object detection algorithms, which can still assist the decision-
making. This means that there are few physical consequences on
the visual perception pipeline in an autonomous system, which
simply loses the tracker of an object without moving it in or out.

4.3 Design Challenges and Potential Solutions

(C1) Physical Space Constraints. The need for a physically feasi-
ble tracker hijacking attack arises from the challenges of conducting
a purely image-based attack. With increasing security measures for
autonomous systems, it is logistically easier to perturb the physical
world to alter a system’s perception instead of compromising the
system itself. Yet, converting a 3D space in the physical world to a
2D space for perturbations is not trivial.

One approach to ensure a usable physical perturbation region
is to commandeer a part of the environment and apply physical
patches to objects. For example, for vehicle tracker hijacking, an
attacker can paste a patch with adversarial noise onto the back of a
car and drive it in front of the victim, ensuring that the car is always
a usable attack region [11, 18]. However, commandeering surfaces
sacrifices flexibility that may be crucial to ensuring physical feasi-
bility in a dynamic environment. In the previous example, a vehicle
interceding behind the attacker vehicle renders the patch obsolete.

Another approach would be to only display or project noise onto
the object targeted for tracker hijacking. However, this severely
constrains the amount of area that is usable for a tracker hijacking
attack. As we show in Section 6.4.3, having a limited area to display
or project noise onto negatively impacts the attack success rate.
Thus, there is a need to distill the environmental constraints into
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Figure 4: Illustration of AttrackZone’s attack stages.

x usable region(s) for adversarial noise, while ensuring that these
regions are sufficient to launch a tracker hijacking attack.
(C2) Stealthiness. Perturbations should be crafted to be small, in-
nocuous, or imperceptible to a casual observer. Yet, perturbations
must still be visible to the camera and must not be so minute as to
lose their effect. Therefore, the attacker must find minimal pertur-
bations to achieve the attack goal.
(C3) Spatiotemporal Constraints. The object trackers are spa-
tiotemporally consistent, with each prediction relying on the pre-
vious tracking results. This places a time constraint on the noise
generation and attack regions. Unlike in object detection attacks,
where each individual image frame can be treated independently, ob-
ject tracking attacks must successfully influence a group of frames
over a given period, necessitating rapid adjustments to the attack
to match changes in the surrounding environment. This plays an
important role in the success of offline attacks vs. online attacks.
Offline attacks start with all of the necessary information to en-
sure consistency when adapting to a changing environment, while
online attacks do not, putting them at a disadvantage.
(C4) Evade Kalman Filtering. A tracker hijacking attack that
moves randomly and unrealistically around an image can be de-
feated by a Kalman Filter, which mitigates the effects of the hi-
jacking. Because Kalman Filters are often used to correct tracking
errors, with little additional overhead [7], the attack approach must
be able to evade Kalman Filtering to be considered functional.

5 PHYSICAL OBJECT TRACKER HIJACKING

We present AttrackZone, a spatiotemporal attack for tracker
hijacking, which identifies the attack zones within a physical scene
(spatial) and generates physical perturbations across time (tempo-
ral). AttrackZone allows an attacker to launch remote physical at-
tacks to disrupt regular operations of object trackers in autonomous
systems. AttrackZone is general to all Siamese-based trackers used
in diverse autonomous systems.

Figure 4 presents the stages of AttrackZone. The attacker first
defines an attack goal, specifying a desired location for the bounding
box of the targeted object to move to ( 1 ). The attacker can either
specify the end region or a sliding window over multiple frames
to ensure a smooth tracker movement. After defining the attack
goal, the attacker supplies the 3D point cloud of the surrounding
environment and a camera feed (to provide a surrogate for the
victim’s view) to obtain an attack zone ( 3 ), the valid regions within
a scene used for physical manipulations (Section 5.1). The attack
zones systematically determine the usable physical regions within
the environment, addressing physical space constraints to project
the perturbations and increase the attack success likelihood (C1).

Once the attack zones are identified, the attacker supplies a
trained Siamese network and generates perturbations for the attack
zones ( 4 ). The attacker uses the Siamese network for feedback,
and minimizes a loss function (Section 5.2) to generate heatmap-
altering perturbations until the optimal ones for tracker hijacking
are found ( 5 ). The loss function minimization ensures a minimal
amount of perturbations that achieve the intended effect, address-
ing stealthiness (C3). In addition, each perturbation generated is
checked against a Kalman Filter. If the Kalman Filter prevents the
tracker from going to the attacker-specified location, we discard the
perturbations and generate a new pattern (C4). If the victim’s route
is known ahead of time, steps 4 and 5 can be conducted in advance
with no time constraint, generating perturbations offline to play dur-
ing an attack, which directly addresses spatiotemporal constraints
offline (C2). Otherwise, the noise can be generated online at a slower
but still adequate rate. We discuss the tradeoff between online and
offline attacks in Section 6.3. Lastly, the attacker passes the perturba-
tions to a projector, which casts onto the valid attack zones ( 6 - 7 ).

5.1 Attack Zone Identification

The first step of the AttrackZone attack is to identify a valid
attack zone within the victim camera’s view for generating physical
adversarial perturbations on real objects.

5.1.1 Point Cloud Remapping. To find valid physical attack zones,
we initially collect the 3D point cloud of the scene where the attack
is conducted. The point cloud can be collected online or offline
through light-based sensors, such as LiDAR and stereo cameras.
These sensors yield more accurate point clouds for attack zones
than non-light-based sensors (e.g., sonar) because they generate
a semantically precise 3D representation of an environment, in-
cluding the scene shape and its ground surface characteristics. For
example, a LiDAR penetrates glass surfaces while sound waves
bounce off any solid surface including glass.

As an alternative to light-based sensors, we have also examined
the impact of generating the area of attack scene using semantic
segmentation, such as through Mask R-CNN [16]. Semantic seg-
mentation assigns a class to each pixel in an image, allowing one
to separate it into different zones. However, we found that seg-
mentation is susceptible to environmental conditions, e.g., uneven
lighting [32], which yields imprecise 3D point clouds.

We determine the valid attack areas relative to the victim’s cam-
era (e.g., a camera installed behind the rear-view mirror or on the
dashboard in a vehicle) after the 3D point cloud is obtained. Algo-
rithm 1 details the steps for filtering out the 3D points not in the
victim camera’s Field of View (FoV). It is a worklist-style algorithm
that takes the point cloud in coordinates with respect to the victim
camera, the resolution of the attacker’s surrogate camera, and the
camera’s FoV. We also include a maximum projection distance to
account for the distance limit of the attacker’s projector. The algo-
rithm first computes the distance matrix from each LiDAR point
to the origin (Line 2). It then calculates the horizontal and vertical
FoV to identify each LiDAR point (𝑝𝑐 = [𝑥,𝑦, 𝑧]) with Equation 1
(Lines 3-4), where 𝛼 is x for horizontal FoV and y is for vertical FoV.

required_fov = |atan2(𝛼, 𝑧) · 180/𝜋 | (1)
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Algorithm 1 Filtering 3D Points in an Attack Scene
Input: 𝑝𝑐 : List of points in 3D point cloud, (𝐶𝑤 ,𝐶ℎ): Surrogate camera’s

width and height resolution, (𝐶hfov,𝐶vfov): Surrogate camera’s horizon-
tal and vertical FoV, 𝑑 : max projection distance

Output: selected_points: 3D points visible to the camera.
1: function filter_3d(𝑝𝑐 ,𝐶𝑤 ,𝐶ℎ ,𝐶hfov,𝐶vfov)
2: distVictim = compute_distance(𝑝𝑐 , origin)
3: 𝑝hfov = compute_horizontal_fov(𝑝𝑐 )
4: 𝑝vfov = compute_vertical_fov(𝑝𝑐 )
5: selected_points = []
6: for 𝑝 ∈ 𝑝𝑐 do

7: distanceOk = distVictim[𝑝𝑐 ] < 𝑑

8: hfovOk = 𝑝hfov [𝑝𝑐 ] < 𝐶hfov/2
9: vfovOk = 𝑝vfov [𝑝𝑐 ] < 𝐶vfov/2
10: if distanceOk & hfovOk & vfovOk then

11: Add 𝑝𝑐 to selected_points
12: end if

13: end for

14: return selected_points
15: end function

We discard points whose distance exceeds the specified range
(Line 7). We also check the FoV of each point (computed at Lines
3-4) against the surrogate camera’s FoV (Lines 8-10) to remove
points that fall out of FoV range. The algorithm returns the list of
points only visible to the camera. We then project the filtered 3D
coordinates of points onto the 2D image coordinates to determine
the attack zones in 2-dimensional space (where the image will be
perturbed). To accomplish this, we compute the camera’s intrinsic
matrix 𝑐 , a matrix based on camera parameters commonly used in
plane-based camera re-sectioning and calibration [44]:

𝑐 =
©«

]𝑤
2∗tan(FoV∗ 𝜋

360 )
0 ]𝑤

2
0 ]𝑤

2∗tan(FoV∗ 𝜋
360 )

]ℎ
2

0 0 1

ª®®¬ (2)

Here ]𝑤 and ]ℎ are the width and height of the camera resolution,
and FoV is the camera’s field of view. Should the viewing angles of
the victim camera and the attacker surrogate camera be different,
we use the FoV of the intersection of their two views to ensure that
we only project to areas that the victim camera can see. Lastly, to
obtain their 2D projection onto the image, we take the dot product
of 𝑐 (Equation 2) with filtered 3D points.

5.1.2 Attack Zone Generation. Once the valid 3D point clouds are
projected onto the 2D image of the attack scene, we generate the
attack zones, which define the valid regions within a scene used for
physical manipulations. Because a 3D point cloud is not contiguous,
we provide a threshold 𝑘 to determine the number of pixels around
a projected 3D point covered by that point. Specifically, 𝑘 defines
the maximum number of pixels away in the x or y dimension that
is still considered to be part of the projected point. The 𝑘 value
depends on the maximum projectable distance and point cloud
density. For lower point densities and higher projector distances,
a higher 𝑘 accounts for a more extensive spread of points on an
adjacent surface.

We then generate an image mask for each pixel. If the pixel is
covered by a 3D point, we set true for the pixel and false otherwise.

Camera View

(t1,…,tn)

3D Point Cloud
(t1,…,tn)

Point Cloud to 
Image Projection

(t1,…tn)
t1

3D Points Filtering (Algorithm 1)

…

tn

Final Attack Zones

Figure 5: Illustration of attack zone generation steps.

Therefore, we ensure that every pixel with a value of true represents
a valid point in the attack scene for the projection attack. With 2D
zones mapped onto the image, the pixels within each zone can be
readily perturbed to achieve the attack goal.

Figure 5 illustrates the attack zone generation process with the
example of a target vehicle traveling down a roadway. The attacker
takes the 3D point cloud of the environment and the camera’s
view and superimposes the point cloud onto the surrogate cam-
era feed (covering the same viewing angle as the victim) through
Algorithm 1. The attacker then converts the 3D point cloud into
valid tracker hijacking attack zones highlighted in red color. We
note that for each scene frame (t1, . . ., tn), the valid attack zones
are continuously updated to reflect the surrounding environment.

5.2 Attacking Object Trackers

Wepresent the specifics of our physically launched attack against
object tracking and detail our process for generating the noise fed
into the projector. We focus on generating stealthy noise-based
perturbations that would be hard for a human to notice.

5.2.1 Physical Adversarial Perturbation Generation. Algorithm 2
encapsulates the adversarial perturbation process. Siamese-based
object trackers use a Region Proposal Network (RPN) to classify each
pixel in an image as either a background (to be ignored) or a target
(to be tracked). Over a given number of “proposals” (attempts), each
pixel is given a regression label 𝑝𝑟 (which corresponds to whether
or not an object is contained within the pixel) in addition to its
classification label 𝑝𝑐 of either “target” or “background”. Combined
with a loss function, accuracy increases as more proposals are made.

Given an input frame 𝐼 , a given number of proposals to generate
𝑁 , binary classification loss 𝐿𝑐 , bounding box regression loss 𝐿𝑟 ,
and correct (benign) classification and regression labels 𝑝𝑐 and 𝑝𝑟
generated by the tracker in the previous frame, which together
represent the most recent result of the tracking algorithm, the loss
function for the region proposal network is given by:

𝐿(𝐼 , 𝑁 , \ ) =
𝑁∑︁
𝑛=1

[𝐿𝑐 (𝐼𝑛, 𝑝𝑐 , \ ) + _ ∗ 𝐿𝑟 (𝐼𝑛, 𝑝𝑟 , \ )] (3)

where 𝐼𝑛 is the proposal for input frame 𝐼 at proposal 𝑛, _ is a fixed
weight used to smooth 𝐿1 loss for regression, and \ is the region
proposal network’s parameters to be optimized [21].

The RPN makes a series of 𝑁 -1 proposals, with each proposal
aimed to minimize 𝐿𝑐 and 𝐿𝑟 . The 𝑝𝑐 and 𝑝𝑟 from the previous
frame ensure spatiotemporal consistency across multiple frames
over time, and are required for correct tracking results. We take
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advantage of this fact by creating a corresponding incorrect pseudo
classification label 𝑝∗𝑐 and pseudo regression label 𝑝∗𝑟 , to make both
the binary classification loss (𝐿𝑐 ) and the bounding box regression
loss (𝐿𝑟 ) the same for both the correct and pseudo labels. These
pseudo labels encode the final tracking result we would like to
achieve; thus, by making the pseudo labels indistinguishable from
the correct labels, we are able to control the tracking results.

We codify the attack goal purely as the desired position and
size the attacker wants the tracker to have. Recall that we have
two types of tracker hijacking attack: move-in or move-out. In
the move-in attack, an object’s tracker is moved from the side of
the camera’s view across the center of the view. In the move-out
attack, an object’s tracker is moved away from the center view of
the camera to the side of the view. Both attacks work the same way,
but they differ in where the final position is in relation to the victim
vehicle’s camera. If the target region and the object tracker’s initial
region are on opposite sides of the center of the camera’s view, the
attack is a move-in attack; otherwise, it is a move-out attack.

To encode the attack goals in terms of classification and regres-
sion, we set 𝑝∗𝑐 to be the inverse of 𝑝𝑐 , un-targeting the original
target region and targeting the previously non-target region. We
set 𝑝∗𝑟 to be the desired location of the tracker bounding box. The
“desired location” is controlled by the attacker with a target coor-
dinate (x and y), as well as width and height. This allows us to
customize the hijacking attack for different purposes. For example,
in addition to conducting a move-out attack to cause a vehicle to
crash, we can also craft a specific width and height similar to those
of another vehicle making the same movement, as a protective
measure against discovery.

As a further constraint, we ensure that attacks will not be de-
tected by a standardized linear Kalman Filter implementation [46].
We do not assume that the victim has a Kalman Filter implemented;
rather, we ensure that the attack results are similar regardless of
whether or not a Kalman Filter is implemented. To do this, we run
the Kalman Filter on the hijacked tracker and observe its effects. If
the Intersection over Union (IoU) of the Kalman Filter results is less
than 70%, we consider the noise ineffective, and discard that pattern
before trying again. An attacker can also split a largemovement into
a series of smaller ones over time, to reduce the velocity of the hi-
jacked tracker and ensure that a Kalman Filter will not correct for it.

With these constraints, we define the loss for tracker hijacking
with \ that represents the network parameters of the tracker:

𝐿adv (𝐼 , 𝑁 , \ ) =
𝑁∑︁
𝑛=1

[(𝐿𝑐 (𝐼𝑛, 𝑝𝑐 , \ ) − 𝐿𝑐 (𝐼𝑛, 𝑝∗𝑐 , \ ))

+ _ ∗ (𝐿𝑟 (𝐼𝑛, 𝑝𝑟 , \ ) − 𝐿𝑟 (𝐼𝑛, 𝑝∗𝑟 , \ ))] (4)

The loss function is structured in terms of a displacement (differ-
ence) between the original (𝑝𝑟 ) and target regions (𝑝∗𝑟 ). This means
that the deciding factor in the adversarial loss generation is the
overall displacement of the bounding box, rather than the specific
goal of move-in or move-out. A move-in attack that moves a bound-
ing box left, from the side of the scene to the center, is functionally
identical to a move-out attack that moves the bounding box by
the same amount from the center to the left side of the scene. The
move-in and move-out attack goals only differ in the situations in

Algorithm 2 Generating Tracker Hijacking Perturbations
Input: Input video 𝑣, target location 𝑡 , attack area 𝛼 .
Output: Adversarial perturbations to be projected.
1: function generate_adv_perturbations(𝑣, 𝑡 , 𝛼 )
2: for frame in 𝑣 do

3: for𝑚 = 1 to𝑀 do

4: 𝑝𝑐 , 𝑝𝑟 = minIoU(𝑚,𝑚 − 1)
5: 𝑝∗𝑐 = inverse(𝑝𝑐 )
6: 𝑝∗𝑟 = 𝑡

7: gen_adv_loss(𝛼) ⊲ Equation 4
8: initialize_loss(𝑚 + 1,𝑚)
9: end for

10: end for

11: return Final noise pattern from perturbations
12: end function

which they are deployed and their consequences. We discuss this
further in Section 6.

Given an input frame 𝐼 , we generate an adversarial perturbation
over consecutive steps up to the total𝑀 perturbations:

𝐼𝑚+1 = 𝐼𝑚 + 𝑒

𝑀
∗ sign( 𝛿𝐿adv

𝛿𝐼𝑚
) (5)

where 𝐼𝑚 is the frame generated on the𝑚𝑡ℎ adversarial perturbation
and 𝐿adv is the hijacking optimization loss loss of 𝐼𝑚 .

We restrict the perturbation area to the attack area when perturb-
ing the image. This ensures that the perturbations are projectable.
The final adversarial perturbation that we use in our attack is 𝐼𝑀 .

6 EVALUATION

We evaluate AttrackZone on three different Siamese trackers,
DaSiamRPN [56], SiamRPN [26], and DaSiamRPN+ [56], against au-
tonomous driving and video surveillance. Using these three models,
we conduct (1) emulated attacks against test samples of trackers,
(2) simulated attacks against recorded frames of traffic scenes in
CARLA, and (3) real-world attacks using a real camera, projector,
and vehicles in a controlled environment. In these experiments, we
sought to validate the attack effectiveness (Section 6.3) and attack
parameters (Sections 6.4.1-6.4.3). We performed our experiments
on a laptop computer with a 2.6 GHz 2-core Intel i5 processor, an
NVIDIA GTX 1650 GPU, and 8 GB RAM, using Python 3.8.10.
End-to-End Attack Impact. We evaluate the attack performance
in autonomous driving and video surveillance because they are
safety-critical applications with the consequences of physical injury
and masked entry into restricted areas.

The impact of move-in or move-out attacks depends on the
context of the attacked scenes. Specifically, we launch the move-in
attacks for autonomous driving experiments when there is nothing
in front of the victim vehicle, and we launch the move-out attack
when there is a tracked object in front of the victim vehicle. While a
move-in attack causes the vehicle to stop, a move-out attack causes
the vehicle to crash. The move-in attacks are conducted for the
video surveillance experiments when a benign person passes by,
and a move-out attack on an entering person. In this case, a move-
in attack causes a false alarm, and a move-out attack masks the
entrance of a person into a restricted area. Although we evaluate
both move-in and move-out attacks, we note that move-out attacks
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Table 1: Details of evaluated Siamese object trackers.

Distractor Aware? Backbone Acc. / Recall / EAO†

DaSiamRPN [56] Y AlexNet 0.56 / 0.34 / 0.326
SiamRPN [26] N AlexNet 0.49 / 0.46 / 0.244
DaSiamRPN+ [56] Y AlexNet-DA 0.59 / 0.28 / 0.383

† Accuracy, recall, and Expected Average Overlap (EAO) computed based on per-
formance on VOT 2017/VOT 2018 benchmark samples [21].

have a greater impact in both evaluated domains. Combined with
the fact that the conditions for move-out attacks are generally more
likely than move-in in these settings, we conducted more move-out
attacks in our experiments.

Following standard conditions suggested by projector-based at-
tacks on object detectors [35], we ensure that our projector can
project perturbations of the same intensity as the algorithm gener-
ates, as dictated by the lighting conditions in the environment.

6.1 Attack Scenarios and Setup

Siamase Trackers and Dataset. Table 1 details the properties,
models, and performance of the state-of-the-art [37] Siamese track-
ers: DaSiamRPN, SiamRPN, and DaSiamRPN+. The trackers are
based on the AlexNet CNN [25]. SiamRPN is a non-distractor-aware
tracker, while DaSiamRPN and DaSiamRPN+ are distractor-aware
trackers. This means that in addition to classifying targets and
backgrounds, they also classify distractors, which are objects that
look like targets but are not supposed to be tracked. DaSiamRPN+,
in contrast to DaSiamRPN, includes an additional step that modi-
fies the AlexNet backbone to be distractor aware. Although they
achieve competitive results, DaSiamRPN+ yields the highest ac-
curacy and Expected Average Overlap (EAO), although it has the
lowest recall. These trackers are trained on the state-of-the-art Vi-
sual Object Tracking (VOT) 2017 or 2018 datasets [24]. The VOT is
a multi-purpose visual dataset that includes samples from various
object-tracking applications, such as autonomous driving, video
surveillance, sports tracking, and facial tracking.
Emulated Attacks.We use each Siamese model to generate hijack-
ing perturbations (to move-in and move-out objects) against three
trackers. We use the complete 15 test samples from the VOT dataset
for autonomous driving (66.7%) and video surveillance (33.3%). Each
video has a different resolution and aspect ratio that provides a
wide range of conditions. In our experiments, because the VOT
dataset does not provide the 3-D point cloud of a scene, we segment
the images into valid and invalid attack zones based on their class.
Cars, roads, sidewalks, buildings, and road signs in each scene are
marked as valid attack zones, and manually reviewed to ensure the
segmentation results are correct.
Simulated Attacks on CARLA. We used the DriveTruth auto-
mated autonomous driving dataset generator [33] to create a dataset
for evaluating AttrackZone’s attack performance. The dataset, cre-
ated in the CARLA simulator, includes both image and LiDAR data
collected in a realistic environment, It contains 15 20-second sce-
narios, recorded at 30 frames per second with various lighting and
traffic conditions, as well as randomized distributions of pedestri-
ans, cyclists, and vehicles with different appearances and positions.

Table 2: Attack success rate on the VOT dataset.

DaSiamRPN 93.3% 100% 93.3%
SiamRPN 93.3% 100% 93.3%Source

Tracker DaSiamRPN+ 93.3% 100% 93.3%
DaSiamRPN SiamRPN DaSiamRPN+

Destination Tracker

Of these scenarios, three were selected for move-in attacks, and
twelve for move-out attacks.
Real-world Physical Attacks. We conduct real-world attacks
against moving vehicles and pedestrians in controlled settings cho-
sen for minimal traffic, such as on the highest level of a parking
garage that is empty during daylight hours. Similarly, experiments
on streets were conducted at night on residential roads with lit-
tle traffic. All equipment was operated by individuals experienced
in outdoor vehicle experiments. We used a real camera, projector,
and vehicles, and generated practical scenarios for autonomous
driving and video surveillance to evaluate both online and offline
attacks. In the offline attacks, perturbations are generated in ad-
vance based on the victim vehicle/pedestrian route, at a stable rate
of 30 frames per second (fps) to match that of the surrogate camera.
In the online attacks, we generate the perturbations at run-time
while the victim vehicle/pedestrian is moving based on the images
fed from the attacker’s surrogate camera. We use an average rate
of 2.5 fps in online attacks, dependent on CPU and GPU speed, to
generate the perturbations. We use an HD camera to record attack
video footage in 1920x1080 resolution and an Optoma LV130 mini
portable projector [38] to project the generated perturbations. This
specific resolution is selected as it is widely supported by AD and
surveillance camera manufacturers on the market [28].

6.2 Evaluation Metrics

We define attack success rate by the accomplishment of a given
attack goal, move-in or move-out. In line with previous work [22],
we consider a move-out attack successful when the tracker’s in-
tersection with its original region is 0. We consider a move-in
attack successful when the bounding box overlaps the center of
the x-axis of the image. Under these conditions, physical conse-
quences will arise. We additionally present the successful attacks
between DaSiamRPN/DaSiamRPN+ and SiamRPN to demonstrate
inter-transferability, showing that the attack can be launched across
Siamese models. Meanwhile, the successful attacks between DaSi-
amRPN and DaSiamRPN+ demonstrate intra-transferability, show-
ing that the attack can be launched between the same Siamese
model trained on a different dataset.

6.3 Attack Effectiveness

6.3.1 Emulated Attack Results. We assess the effectiveness of At-
trackZone by directly applying the generated perturbations for
autonomous driving and video surveillance samples in the VOT
dataset. In both the autonomous vehicle and video surveillance sub-
sets, 20% of the cases were move-in attacks, and the other 80% were
move-out. Table 2 shows the attack success rate on three Siamese
trackers and their intra and inter transferability.
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Figure 6: Illustration of example attacks on the autonomous driving and video surveillance systems. (a) Move-in attacks against

VOT dataset, (b) Move-in (left) and move-out (right) attacks on the CARLA dataset. The roads, surrounding buildings (but not

trees) and vehicles are considered valid attack surfaces.

Table 3: Attack success rate on the CARLA dataset.

DaSiamRPN 93.3% 93.3% 86.7%
SiamRPN 93.3% 93.3% 86.7%Source

Tracker DaSiamRPN+ 93.3% 93.3% 86.7%
DaSiamRPN SiamRPN DaSiamRPN+

Destination Tracker

We found that the SiamRPN, a non-distractor-aware tracker, is
the most susceptible to attacks, with 100% successful attacks. DaSi-
amRPN and DaSiamRPN+ are both equally susceptible, with 93%
successful attacks. The destination model affects the attack’s per-
formance, with the source model producing the same results. While
the trackers behave slightly differently depending on the model
used to generate the noise, the result of the tracker remains the
same for each individual video. This suggests that with environ-
mental factors remaining the same, noise generated on a particular
Siamese tracker is universally effective against other Siamese track-
ing models. Figure 6a presents the impact of successful move-in
attacks for the autonomous vehicle and video surveillance domains.

We found that the high success rates for all trackers are mainly
due to the noise being applied directly to the video frames, pre-
venting environmental factors such as lighting from affecting the
results. This lack of interference from environmental factors also
leads to consistent results. Additionally, the root cause of 6.7% of
unsuccessful attacks is the rapidly fluctuating environment (due
to a shaky camera), which prevents AttrackZone from generating
hijacking noise consistently across multiple frames.

6.3.2 Carla Dataset Results. We evaluate the effectiveness of At-
trackZone by conducting attacks on the DriveTruth-generated
CARLA simulated dataset.
Attack Scenario Creation.We generate a set of scenarios likely
to occur in a real-world tracker hijacking attack, and replicate them
in CARLA. Within the simulation, a victim vehicle (of randomized
make and model) drives around realistic residential and city areas
while simultaneously recording video (via the front camera) and
LiDAR data. Other traffic agents and pedestrians are randomized,
providing a range of population densities for both vehicles and
humans. All agents (vehicles, pedestrians, and cyclists) within the
simulation obey traffic laws, road signs, and speed limits.

Table 4: Attack success rate in the physical world (values in

bold are Offline and values in light are Online attacks).

DaSiamRPN 88.9% / 88.3% 88.9% / 88.3% 100% / 66.7%
SiamRPN 88.9% / 72.7% 77.8% / 90.9% 100% / 100%Source

Tracker DaSiamRPN+ 71.4% / 60% 85.7% / 80% 100% / 80%
DaSiamRPN SiamRPN DaSiamRPN+

Destination Tracker

Table 3 shows the results of the simulated experiments. Figure 6b
demonstrates two successful attacks on the CARLA dataset. DaSi-
amRPN+ proved more resistant to attacks than DaSiamRPN and
SiamRPN, with 13.3% of attacks failing, suggesting that further
training on distractors can improve robustness against attack (fur-
ther discussed in Section 7). Over 50% of the failures were due to
a lack of attack zones, discussed further in Section 6.4.3. Besides
this factor, the destination model is the most important factor in
success, with consistent results no matter the source model.

6.3.3 Real-world Experiments. We evaluate the AttrackZone suc-
cess rate by examining the performance of trackers on the victim’s
video as we use a projector to physically perturb the environment.
Attack Scenario Creation. A practical attack in the real world,
unlike the emulated and simulated attacks, requires the following:
(1) be effective across continuous video frames as the surrounding
scene is changing, (2) generate the perturbations at the target cam-
era, and (3) cause an end-to-end impact on driving and surveillance.

To achieve these requirements, we create a set of attack scenarios
in a controlled environment. For autonomous driving experiments,
we drive a GMC Sierra truck or a Hyundai Sonata sedan in front of
the victim vehicle in residential environments with buildings, traffic
signs, or other structures, which we leverage to cause the victim
vehicle to rear-end the vehicle in front of it. For video surveillance
experiments, we simulate a scenario where an attacker attempts
to disguise entry into a building. We set up a security camera to
watch a particular door in a campus building and have the attacker
try to enter the door while projecting noise onto the opposite wall
to mask unauthorized entry.

Unlike the emulated and simulated attacks, where the same set
of videos is used across all experiments, the real-world experiments
were conducted on three different video sets, one for each source
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Figure 7: Offline move-out attack conducted on pedestrian

(left), disguising his entry without setting of an alarm, and a

vehicle (right), causing the victim vehicle to rear-end it.

Groundtruth

Result
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of truck

Figure 8: Online move-out attack conducted on a vehicle.

tracker. Because it is impossible to conduct different attacks simul-
taneously, experiments had to be split based on the model used
to generate the hijacking noise. However, each set of videos was
taken in the same places within 2-4 hours of each other to minimize
environmental factors that may affect the results. Additionally, in
the absence of a LiDAR sensor, we manually mapped valid attack
zones for the environments we tested.
Offline Tracker Hijacking Attacks.We conduct 9 offline real-
world attacks for each source tracker with different destination
trackers to assess their inter- and intra-transferability. Table 4 shows
the offline attack success rate in bold values. Our scenarios contain
one pedestrian tracking and 8 vehicle tracking examples, two of
which are shown in Figure 7.

We found that DaSiamRPN+ is the most susceptible to attacks,
with success rates between 71.4% and 100%, due to more accurately
honing in on the hijacking noise as a proper target. Unlike the
emulated and simulated attacks, we observe a wide variance in
success rate between different source and destination model pairs,
likely due to differing environmental factors in the video datasets
(separated by source model). 50% of all failures are attributed to
the noise being washed out by ambient light sources, such as the
tail lights of the leading vehicle. The rest of the failures are caused
by the environment changing between offline attack zone/noise
generation and the actual attack (e.g., a car passing by unexpectedly
during the attack, changing the attack zone layout).
Online Tracker Hijacking Attacks. For the online real-world
attacks, we conduct 6 vehicle tracking attacks for DaSiamRPN, 11
vehicle tracking attacks for SiamRPN, and 5 vehicle tracking at-
tacks for DaSiamRPN+. Although there is a different number of

videos, they represent the same areas over the same duration of
time. For example, SiamRPN has shorter but more numerous videos
compared to DaSiamRPN+. This split was done due to outside inter-
ruptions during the experiments (e.g., a jaywalker interrupting the
drive). No pedestrian tracking attacks were conducted for online
attacks. Because security cameras observe a static area that remains
relatively unchanged, it is trivial to conduct an online attack com-
pared to the vehicle tracking case, where the vehicle’s camera may
encounter many different environments in a short period of time.

Table 4 shows the online attack success rate in light numbers.
Figure 8 shows the results of an online move-out attack conducted
against a vehicle. We see a marked decrease in success rate com-
pared to offline attacks. This is because online attacks, bounded by
computational speed, played at a much slower rate, which led to
the environment changing faster than the attack could account for.
With the noise updating less frequently, the non-Distractor-aware
SiamRPN was the most susceptible to attack, with an average of
86.41% successful attacks regardless of source or destination model.
In fact, with SiamRPN as both the source and destination model, the
online attack was more successful than the offline attack, indicating
that SiamRPN has the most flexibility in desynchronization com-
pared to other models. DaSiamRPN and DaSiamRPN+ were more
successful in classifying the desynchronized noise as a distractor,
averaging an 82.2% and 73.69% success rate, respectively.

6.4 Attack Parameters

6.4.1 Attack Duration. We measure the number of frames it takes
for the move-in or move-out attack goals to be successful for each
attack. Because all videos used experimentally run at 30 frames per
second, “frames to success” gauge the amount of time an attacker
needs to succeed. Figures 9a-9c show the mean, median, and stan-
dard deviation for the number of frames required to be successful
across models for the emulated attacks, offline real-world attacks,
and online real-world attacks, respectively. The y-axis plots the
number of frames to succeed on a logarithmic scale, with the me-
dian bar represented as a black line. Each item on the x-axis is a
source model, with box plots representing destination models.

For the emulated attacks, where conditions are uniform, the
destination dataset is themain deciding factor in how long it takes to
succeed. The SiamRPN model takes the shortest amount of time on
average. However, there is a significant variation in the number of
frames to success, indicating that environmental factors are critical
in determining the time needed for a successful attack. For example,
the base DaSiamRPNmodel can range from a few frames needed for
a successful attack to hundreds of frames required, depending on
the environment and source dataset. We also observe that outliers
can far outpace the median and average, with some outliers over
100 times the average. As a general trend, we observe on average
10-100 frames are the norm for a successful attack in all cases, which
amounts to 0.3 to 3 seconds of continuous attack.

Real-world attacks perform similarly to emulated attacks, typi-
cally taking 10-100 frames to complete. Yet, there is a much greater
distribution due to the more significant variation in environmental
factors. Considering the median frames-to-success, offline attacks
are successful faster than online attacks due to the higher frame
rate at which the noise is changed.
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Figure 9: Distribution of the number of frames required for (a) emulated, (b) offline, and (c) online real-world attacks.

Table 5: Average attack zone utilization for successful cases

for real world physical attacks (bold), the VOT dataset attack

(italic), and the CARLA dataset attack (light).

DaSiamRPN SiamRPN DaSiamRPN+

Average 62.8% / 83.3% / 81.6% 60% / 83.5% / 81.8% 63.2% / 83.3% / 81.6%
Std Dev 15.4% / 19% / 21.3% 11.9% / 18.73% / 21% 14.8% / 19% / 21.3%

6.4.2 Amount of Perturbations. For the emulated and simulated
experiments, it is possible to compute the maximum per-pixel per-
turbation used to conduct a tracker hijacking attack. This is because
we inject the noise pattern into the attack zones in these examples,
directly altering the image. Maximum perturbations are not a use-
ful metric for real-world physical attacks. Directly injecting the
noise pattern could allow an attacker to completely transform an
image in the digital domain. However, it is impossible to physically
change the environment with a projector in real-world attacks.
The maximum number of perturbations for the emulated attacks
is stable across source models (14.32 ± 0.07 for DaSiamRPN, 14.35
± 0.06 for SiamRPN, and 14.34 ± 0.06 for DaSiamRPN+), with a
low standard deviation and few outliers. The average modification
to a pixel’s RGB value is under 5.86% (15) per channel. The simu-
lated attacks require less perturbation to be successful (10.05 ± 0.22
for DaSiamRPN, 10.25 ± 0.72 for SiamRPN, and 10.5 ± 1 for DaSi-
amRPN+) compared to the emulated attacks, which have an average
pixel modification of under 4.7% (12) perturbations per channel.
This is due to the greater prevalence of brighter lighting in the
VOT dataset. Brighter surfaces can wash out weak perturbations,
requiring stronger hijacking noise for an attack to be successful.

6.4.3 Attack Zone Utilization. We define the attack zone utilization
(AZU) as the percentage of the victim camera’s image over which
noise is applied. This is directly related to the percentage of the
image that is a valid attack zone. We examine AZU in successful and
unsuccessful attacks to infer the effect of AZU on success rate.

For real-world attacks, calculating the AZU is difficult because it
is hard to quantify exactly where the noise has been applied due
to environmental factors like light sources washing out projector
images. Therefore, although Table 5 shows the raw AZU for success-
ful attacks in the real world (in bold), we note that the actual AZU

might be lower. On average, we observe that the AZU is 62% ± 14%
across the three models.

Because our attack on the VOT dataset involves directly manipu-
lating the images, calculating its AZU is much easier. The AZU for suc-
cessful attacks is shown in Table 5 (in italics). The AZU on the entire
image set across three models is on average 83.5% ± 18.7%. Similarly,
AZU of attacks on CARLA dataset yields results (Table 5, in light)
similar to the VOT attack. The overall average AZU is 81.7% ± 21.2%.

For real-world physical attacks, the AZU is similar between suc-
cessful and unsuccessful cases, indicating that attack zone availabil-
ity is not important for success in physical experiments. However,
for the emulated attacks, we find that the AZU for the unsuccessful
cases across models was 88.6% ± 7.4%, 5% higher than the average
for both the DaSiamRPN and DaSiamRPN+. Intuitively, a more sig-
nificant AZU should mean a higher success rate, as the attack is able
to perturb more parts of the image, but this has proven not to be the
case. Further, for the CARLA simulated experiments, failure cases
had an AZU at least 30% lower than average. This suggests, within
a margin of around 30% of the image’s area, overall AZU does not
matter as much as the environmental factors, such as the motion
of the car and the quality of the image.

7 DISCUSSION AND LIMITATIONS

7.1 Practical Considerations

Generality ofAttackZones andNoticeability.Wedemonstrated
the viability of attack zones to conduct tracker hijacking attacks
on object trackers. However, attack zones can be extended to other
attacks that require projector surfaces. For example, AttrackZone
can find valid areas for conducting the projector-based phantom
attacks [35]. There are also other attacks against Siamese trackers,
such as the C-S attack, an availability attack that removes track-
ers entirely [50]. This can be expanded to work via AttrackZone
because it operates on heatmap manipulation. Additionally, adver-
sarial perturbation methods for other tracker architectures have
been proposed [22]. Although these different tracking algorithms
have incompatible architectures and separate vulnerabilities, zone
generation is algorithm agnostic. Therefore, it can be used to launch
physical attacks on non-Siamese trackers, increasing the transfer-
ability of AttrackZone. We will examine other attacks that can be
conducted via the attack zone generation process.
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Figure 10: Applying noise cancellation defense against At-

trackZone. Tracker remains hijacked.

Surrogate Views. Flying a drone close to the victim camera is the
most convenient approach for creating a similar, adaptable view-
point mimicking the victim’s view. Drones flying close to victim
vehicles have been suggested by previous works [35, 55]. How-
ever, other approaches for creating the surrogate view are possible,
including discreetly attaching a camera to the victim’s car, or trans-
forming the camera’s view with a dissimilar view angle via the
camera’s intrinsic matrix. If none of these methods are viable for
an attacker, the attack can be conducted offline and the surrogate
view sourced via public mapping data.
Multi-Object Tracking. Siamese trackers, including DaSiamRPN,
only support single-object tracking [56]. However, real-world closed-
source implementations extend Siamese tracking to multiple ob-
jects [9]. AttrackZone works the same way for multi-object track-
ing, with a single-object tracker for each object in the scene. We will
investigate AttrackZone’s performance on multi-object tracking.
Viewing Angles. Many existing perception attacks consider view-
ing angles by design (e.g., [3, 11, 54]) as their adversarial noise is
placed on a stationary object. As the vehicle is driving forward,
the viewing angle of the object is gradually changing. On the con-
trary, AttrackZone is not limited by such a constraint because a
drone might fly close to the victim camera and change its orienta-
tion/position, compensating for the changes in viewing angles.
Limitations. Similar to other projector attacks in the physical
world, AttrackZone is also limited by the brightness of the envi-
ronment and the availability of projectable surfaces. For example, a
much more powerful projector is required to conduct a projector
attack during the daytime. Additionally, there might be very few
visible surfaces in flat, open fields to project perturbation.

Because a projector competes with other light sources, a projec-
tor attack may be complicated by bright headlights or other sources
of noise pollution while driving. Our real world experiments show
that standard headlights and brake lights are insufficient to negate
the threat of tracker hijacking via a projector. However, bright light
sources, such as custom LED lights on cars or floodlights on city
streets, might unusually affect the AttrackZone performance, ei-
ther washing out projector noise or removing usually valid attack
zones by making them too bright to use.

7.2 Countermeasures

Noise Cancellation. Previous works have applied noise cancella-
tion to account for noise-based attacks applied directly to an im-
age [21, 39]. However, because the noise pattern shown in the physi-
cal domain is different from one generated in the image domain (due

Groundtruth

Result

Result

Groundtruth

Groundtruth

Result

Figure 11: Noise cancellation resulting in unintentional

tracker hijacking when no attack is conducted.

Groundtruth

Result

Figure 12: Effects of sensor fusion on attack results. Although

the object tracker is hijacked (left), the original object still

registers on the LiDAR (right, circled).

to environmental differences arising from projector strength, light-
ing, and the absorption coefficients of physical objects), effective
removal without degrading the tracker accuracy is not practical.

We applied a noise cancellation algorithm specifically tailored
to defend against tracker hijacking [21] to our successful exper-
imental results. Figure 10 shows the effect of noise cancellation
on our attack. The results are not altered, and tracker hijacking
remains viable under this defense. Noise cancellation can lead to
unintentional tracker hijacking even when no noise is applied. This
is shown in Figure 11. Although no attack was performed, the noise
cancellation was capable of moving the tracker on its own, making
it an undesirable method of defense.
Sensor Fusion. AttrackZone directly attacks the vision pipeline
of autonomous systems, altering the perception of the camera. Two
dangerous use cases for tracker hijacking in autonomous driving
involve causing the vehicle perception to conclude that an object
has moved into or out of the vehicle’s path, causing it to stop
prematurely or rear-end a vehicle. An additional non-camera sensor
such as a LiDAR or radar can mitigate hijacking attacks. These
sensors register the presence (or lack of presence) of obstacles in
a vehicle’s path. This helps minimize the chance of serious injury
occurring due to a tracker hijacking attack. Figure 12 illustrates
the effect of the attack under sensor fusion. Although the tracker
is still hijacked, the LiDAR still sees the object in its original place.
However, recent work has shown that sensor fusion algorithms are
vulnerable to an adversary who is able to compromise only one of
the fusion sources [30, 34, 42], which means using AttrackZone
alone can potentially bypass some sensor fusion algorithms; let
alone that existing LiDAR perception attacks [47, 55] can be used
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Table 6: Comparison of AttrackZone against current tracker

hijacking attacks.

SORT [22] RTAA [21] AttrackZone

Full Autonomous System Pipeline ✓ ✓ ✓

Physical Domain Evaluation
† ✗ ✓

Valid Patch/Projector Location ✓ ✗ ✓

Transferability between Trackers ✗ ✗ ✓

† The SORT Attack digitally manipulates the images, but the attack is constrained to
surfaces that can be attacked through a patch, making it reasonable to assume that
this attack could be transferred to the physical domain with minimal modifications.

in conjunction with AttrackZone by a powerful attacker. We focus
on a camera-based object tracking system and leave the evaluation
of AttrackZone on sensor fusion as future work.
Building Robust Trackers. The source of the vulnerability of
Siamese trackers to tracker hijacking arises from the design of
the heatmap, making building robust trackers an attractive option
for defense. Unfortunately, previous attempts at creating robust
Siamese trackers have relied on white-box knowledge of how an
attack works and the assumption that the attack operates over
the entire image [21]. In AttrackZone’s case, because the attack
operates on dynamically calculated portions of the image unless
the victim has a LiDAR mapping on hand and knows where the
attacker is projecting from, these assumptions do not hold. While
having a LiDAR mapping is not an issue for vehicles that already
operate on LiDAR, tracking attacker projections in real-time with-
out prior knowledge would add unreasonable amounts of overhead
for the victim. Nevertheless, previous works have found that train-
ing Siamese trackers on distractors greatly improved their perfor-
mance [56]. Training Siamese trackers with noise patterns labeled
as distractors will likely strengthen their resistance to AttrackZone,
which will be a part of our future work.

8 RELATEDWORK

Attacks against Object Trackers. Table 6 presents the capabilities
and drawbacks of two existing, representative tracker hijacking
attacks [21, 22]. Other attacks against object tracking either do not
consider physical feasibility [8, 19, 51], or for the one that does [10],
its attack goal is bounding box reshaping not hijacking. While all
attacks target the full autonomous system pipeline (both object
detection and object tracking), AttrackZone is unique in that it can
hijack object trackers in the physical domain while transferring
across multiple models.
Projector-based Attacks. Previous work in projector-based at-
tacks has mainly focused on fooling object detection by projecting
a pattern onto a surface, altering the lighting conditions to cause
an object classifier to misclassify images [12, 36]. Unlike our work,
these works attack object classification and use phase modulation
on light rather than adversarial noise. Further work involves pro-
jecting depthless objects, like stop signs, onto hard surfaces visible
to the camera [35]. In this case, an actual image of an object is
projected, causing the AD system to misinterpret the projection
as a real object and react accordingly. The vulnerability is not re-
lated to misclassification; instead, it is due to a lack of contextual
understanding by the AD system as a whole. The tracker hijacking

attack implemented by AttrackZone is less visible to humans due
to projecting human-unintelligible noise instead of objects.

9 CONCLUSIONS

We present AttrackZone, a new physically-realizable tracker
hijacking attack against Siamese object trackers. AttrackZone sys-
tematically determines valid surfaces within an environment used
for physical perturbations. It then exploits the heatmap genera-
tion process of Siamese Region Proposal Networks to take control
of an object’s bounding box. We evaluated the efficacy of our at-
tack on the original Siamese tracking test dataset, on a diverse
simulated dataset generated in the CARLA simulator, and on real-
world experiments against object tracking in autonomous vehicles
and pedestrian tracking in video surveillance systems. We demon-
strated attack inter-transferability across different types of Siamese
trackers and intra-transferability across different model parameters.
AttrackZone yields an average attack success rate of 92% in 0.3-3
seconds, and runs efficiently in real-world offline and online attacks.
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